00:00 / 00:00
Biochemistry
Amino acid metabolism
Nitrogen and urea cycle
Citric acid cycle
Electron transport chain and oxidative phosphorylation
Gluconeogenesis
Glycogen metabolism
Glycolysis
Pentose phosphate pathway
Physiological changes during exercise
Cholesterol metabolism
Fatty acid oxidation
Fatty acid synthesis
Ketone body metabolism
Alkaptonuria
Cystinuria (NORD)
Hartnup disease
Homocystinuria
Maple syrup urine disease
Ornithine transcarbamylase deficiency
Phenylketonuria (NORD)
Essential fructosuria
Galactosemia
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hereditary fructose intolerance
Lactose intolerance
Pyruvate dehydrogenase deficiency
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Fabry disease (NORD)
Gaucher disease (NORD)
Krabbe disease
Leukodystrophy
Metachromatic leukodystrophy (NORD)
Niemann-Pick disease type C
Niemann-Pick disease types A and B (NORD)
Tay-Sachs disease (NORD)
Cystinosis
Disorders of amino acid metabolism: Pathology review
Disorders of carbohydrate metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
Dyslipidemias: Pathology review
Glycogen storage disorders: Pathology review
Lysosomal storage disorders: Pathology review
Glycolysis
0 / 11 complete
0 / 4 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
glycolysis p. 73
glycolysis and p. 73
glycolysis p. 74
glycolysis regulation p. 74
arsenic and p. 73
diagram p. 72
hexokinase/glucokinase in p. 73
metabolic site p. 70
pyruvate metabolism and p. 75
rate-determining enzyme for p. 71
regulation of p. 74
type 2 muscle fibers p. 465
glycolysis and p. 71
Let’s say that you just ate a big slice of pizza with onions, mushrooms, bell peppers, and jalapenos. To pull energy out of the glucose in that pizza or really any food, requires glycolysis.
Glycolysis is a series of enzymatic reactions in which glucose, a 6 carbon sugar molecule, is broken down into two 3 carbon pyruvate molecules.
And as glucose gets processed, energy is produced in the form of adenosine triphosphate, or ATP.
Now, glycolysis happens in the cytoplasm of cells, and no special organelles or even oxygen are needed to turn glucose into ATP.
Therefore, all cells can use glucose to make energy; and it’s possible to do glycolysis even when oxygen levels are low.
Glycolysis can be divided into two phases: an energy-consuming phase, and an energy-producing phase.
It’s like a business investment - the cell needs to spend some energy before it can start making energy, and like any good investment the cell gets more energy back than it puts in.
The energy-consuming phase requires ATP, and the energy-producing phase generates ATP, as well as other molecules like reduced nicotinamide adenine dinucleotide, or NADH, which can be used to make ATP.
We can keep track of all of this using an energy counter.
Going back to that delicious pizza, first, glucose from those ingredients has to first get from the small intestine into the bloodstream.
In response to high blood glucose, the pancreatic beta-cells secrete insulin.
Now, to get inside the cells, glucose utilizes glucose transporters, or GLUT, which are on the cell membrane.
In fact, some GLUTs like GLUT2 in the liver and pancreatic beta-cells are particularly responsive to glucose in the presence of insulin.
Once glucose gets inside the cell, it’s prevented from diffusing across the cell membrane back into the circulation by enzymes called kinases which phosphorylate the glucose.
Adding a phosphate group changes the shape of the glucose molecule, which means it can’t easily diffuse out of the cell, a bit like a criminal that’s handcuffed to the table in an interrogation room.
The phosphate comes from the breakdown of ATP into ADP and phosphate - so this initial phosphorylation step drops us to -1 on that energy counter.
Glycolysis is a process that breaks down glucose into two molecules of pyruvate. Pyruvate is then used in the citric acid cycle to produce energy in the form of ATP. Glycolysis occurs in the cytoplasm of cells and does not require oxygen.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.