Graves disease

45,271views

00:00 / 00:00

High Yield Notes

10 pages

Flashcards

Graves disease

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 47-year-old woman presents to the emergency department due to altered mental status. She is accompanied by her partner, who reports that the patient was in her usual state before having severe nausea and vomiting during dinner. Medical history is remarkable for long-standing Graves disease, but the patient has been non-compliant with medications. Last week, she had an upper respiratory infection that was resolved without treatment. Temperature is 40°C (104.0°F), pulse is 155/min and irregular, and blood pressure is 155/100 mmHg. On physical examination, the patient is agitated and in severe distress. The patient’s skin is moist, and a large goiter is noted. Laboratory tests show an elevated T3 and T4, low TSH, elevated liver enzymes, mild hyperglycemia, and leukocytosis. The patient is administered IV propranolol, propylthiouracil, and hydrocortisone. An hour later, the doctor adds a potassium iodide-iodine (Lugol's) solution to the treatment. This medication has which of the following immediate effects?  

External References

First Aid

2024

2023

2022

2021

Childbirth

Graves disease and p. 346

Cytokines p. 99, 106

Graves disease and p. 346

Fibroblasts

Graves disease p. 346

Graves disease

autoantibody p. 113

goiter caused by p. 346

HLA-DR3 and p. 98

hyperthyroidism p. 346

type II hypersensitivity p. 110

Hypersensitivity reactions p. 110-111

Graves disease p. 346

IFN- γ (Interferon- γ ) p. 106, 114

Graves disease and p. 346

Thyroid-stimulating hormone (TSH)

Graves disease and p. 346

TNF- α p. 106

Graves disease and p. 346

Transcript

Watch video only

First described by Irish surgeon Robert James Graves, Graves disease is an autoimmune disorder that causes hyperthyroidism.

In hyperthyroidism, ‘hyper’ refers to having too much, and ‘thyroid’ refers to thyroid hormone, so Graves disease refers to a condition where there’s excess thyroid hormones.

Normally, the hypothalamus, which is located at the base of the brain, detects low blood levels of thyroid hormones and releases thyrotropin-releasing hormone into the hypophyseal portal system - which is a network of capillaries linking the hypothalamus to the anterior pituitary.

The anterior pituitary then releases thyroid-stimulating hormone, also called thyrotropin or simply TSH.

TSH stimulates the thyroid gland which is a gland located in the neck that looks like two thumbs hooked together in the shape of a “V”.

The thyroid gland is made up of thousands of follicles, which are small spheres lined with follicular cells.

Follicular cells convert thyroglobulin, a protein found in follicles, into two iodine-containing hormones, triiodothyronine or T3, and thyroxine or T4.

Once released from the thyroid gland, these hormones enter the blood and bind to circulating plasma proteins.

Only a small amount of T3 and T4 will travel unbound in the blood, and these two hormones get picked up by nearly every cell in the body.

Once inside the cell T­4 is mostly converted into T3, and it can exert its effect.

T3 speeds up the basal metabolic rate.

So as an example, they might produce more proteins and burn up more energy in the form of sugars and fats.

It’s as if the cells are in a bit of frenzy.

T3 increases cardiac output, stimulates bone resorption - thinning out the bones, and activates the sympathetic nervous system, the part of the nervous system responsible for our ‘fight-or-flight’ response.

Thyroid hormone is important - and the occasional increase is like getting a boost to fight off a hungry predator or to stay warm during a snowstorm!

Summary

Graves' disease is an autoimmune disorder in which the body produces thyroid-stimulating antibodies, leading to the overproduction of thyroid hormone. People with Graves' disease present with ophthalmopathy, weight loss, anxiety, tremors, irritability, muscle weakness, and diarrhea.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "Harrison's Endocrinology, 4E" McGraw-Hill Education / Medical (2016)
  6. "General hyperpigmentation induced by Grave's disease" Medicine (2018)
  7. "Hyperthyroidism" The Lancet (2016)
Elsevier

Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX