Graves disease

41,371views

00:00 / 00:00

Videos

Notes

Graves disease

Endocrine system

Adrenal gland disorders

Congenital adrenal hyperplasia

Primary adrenal insufficiency

Waterhouse-Friderichsen syndrome

Hyperaldosteronism

Adrenal cortical carcinoma

Cushing syndrome

Conn syndrome

Thyroid gland disorders

Thyroglossal duct cyst

Hyperthyroidism

Graves disease

Thyroid eye disease (NORD)

Toxic multinodular goiter

Thyroid storm

Hypothyroidism

Euthyroid sick syndrome

Hashimoto thyroiditis

Subacute granulomatous thyroiditis

Riedel thyroiditis

Postpartum thyroiditis

Thyroid cancer

Parathyroid gland disorders

Hyperparathyroidism

Hypoparathyroidism

Hypercalcemia

Hypocalcemia

Pancreatic disorders

Diabetes mellitus

Diabetic retinopathy

Diabetic nephropathy

Pituitary gland disorders

Hyperpituitarism

Pituitary adenoma

Hyperprolactinemia

Prolactinoma

Gigantism

Acromegaly

Hypopituitarism

Growth hormone deficiency

Pituitary apoplexy

Sheehan syndrome

Hypoprolactinemia

Constitutional growth delay

Diabetes insipidus

Syndrome of inappropriate antidiuretic hormone secretion (SIADH)

Gonadal dysfunction

Precocious puberty

Delayed puberty

Premature ovarian failure

Polycystic ovary syndrome

Androgen insensitivity syndrome

Kallmann syndrome

5-alpha-reductase deficiency

Polyglandular syndromes

Autoimmune polyglandular syndrome type 1 (NORD)

Endocrine tumors

Multiple endocrine neoplasia

Pancreatic neuroendocrine neoplasms

Zollinger-Ellison syndrome

Carcinoid syndrome

Pheochromocytoma

Neuroblastoma

Opsoclonus myoclonus syndrome (NORD)

Endocrine system pathology review

Adrenal insufficiency: Pathology review

Adrenal masses: Pathology review

Hyperthyroidism: Pathology review

Hypothyroidism: Pathology review

Thyroid nodules and thyroid cancer: Pathology review

Parathyroid disorders and calcium imbalance: Pathology review

Diabetes mellitus: Pathology review

Cushing syndrome and Cushing disease: Pathology review

Pituitary tumors: Pathology review

Hypopituitarism: Pathology review

Diabetes insipidus and SIADH: Pathology review

Multiple endocrine neoplasia: Pathology review

Neuroendocrine tumors of the gastrointestinal system: Pathology review

Assessments

Graves disease

Flashcards

0 / 15 complete

USMLE® Step 1 questions

0 / 6 complete

High Yield Notes

10 pages

Flashcards

Graves disease

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 47-year-old woman presents to the emergency department due to altered mental status. She is accompanied by her partner, who reports that the patient was in her usual state before having severe nausea and vomiting during dinner. Medical history is remarkable for long-standing Graves disease, but the patient has been non-compliant with medications. Last week, she had an upper respiratory infection that was resolved without treatment. Temperature is 40°C (104.0°F), pulse is 155/min and irregular, and blood pressure is 155/100 mmHg. On physical examination, the patient is agitated and in severe distress. The patient’s skin is moist, and a large goiter is noted. Laboratory tests show an elevated T3 and T4, low TSH, elevated liver enzymes, mild hyperglycemia, and leukocytosis. The patient is administered IV propranolol, propylthiouracil, and hydrocortisone. An hour later, the doctor adds a potassium iodide-iodine (Lugol's) solution to the treatment. This medication has which of the following immediate effects?  

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Childbirth

Graves disease and p. 348

Cytokines p. 99, 106

Graves disease and p. 348

Fibroblasts

Graves disease p. 348

Graves disease

autoantibody p. 113

goiter caused by p. 348

HLA-DR3 and p. 98

hyperthyroidism p. 348

type II hypersensitivity p. 110

Hypersensitivity reactions p. 110-111

Graves disease p. 348

IFN- γ (Interferon- γ ) p. 106, 114

Graves disease and p. 348

Thyroid-stimulating hormone (TSH)

Graves disease and p. 348

TNF- α p. 106

Graves disease and p. 348

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Brittany Norton, MFA

Evan Debevec-McKenney

Jake Ryan

Tanner Marshall, MS

First described by Irish surgeon Robert James Graves, Graves disease is an autoimmune disorder that causes hyperthyroidism.

In hyperthyroidism, ‘hyper’ refers to having too much, and ‘thyroid’ refers to thyroid hormone, so Graves disease refers to a condition where there’s excess thyroid hormones.

Normally, the hypothalamus, which is located at the base of the brain, detects low blood levels of thyroid hormones and releases thyrotropin-releasing hormone into the hypophyseal portal system - which is a network of capillaries linking the hypothalamus to the anterior pituitary.

The anterior pituitary then releases thyroid-stimulating hormone, also called thyrotropin or simply TSH.

TSH stimulates the thyroid gland which is a gland located in the neck that looks like two thumbs hooked together in the shape of a “V”.

The thyroid gland is made up of thousands of follicles, which are small spheres lined with follicular cells.

Follicular cells convert thyroglobulin, a protein found in follicles, into two iodine-containing hormones, triiodothyronine or T3, and thyroxine or T4.

Once released from the thyroid gland, these hormones enter the blood and bind to circulating plasma proteins.

Only a small amount of T3 and T4 will travel unbound in the blood, and these two hormones get picked up by nearly every cell in the body.

Once inside the cell T­4 is mostly converted into T3, and it can exert its effect.

T3 speeds up the basal metabolic rate.

So as an example, they might produce more proteins and burn up more energy in the form of sugars and fats.

It’s as if the cells are in a bit of frenzy.

T3 increases cardiac output, stimulates bone resorption - thinning out the bones, and activates the sympathetic nervous system, the part of the nervous system responsible for our ‘fight-or-flight’ response.

Summary

Graves' disease is an autoimmune disorder in which the body produces thyroid-stimulating antibodies, leading to the overproduction of thyroid hormone. People with Graves' disease present with ophthalmopathy, weight loss, anxiety, tremors, irritability, muscle weakness, and diarrhea.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "Harrison's Endocrinology, 4E" McGraw-Hill Education / Medical (2016)
  6. "General hyperpigmentation induced by Grave's disease" Medicine (2018)
  7. "Hyperthyroidism" The Lancet (2016)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX