3,652,571views
00:00 / 00:00
Microbiology Exam #1
Bacterial structure and functions
Viral structure and functions
Prions (Spongiform encephalopathy)
Varicella zoster virus
Epstein-Barr virus (Infectious mononucleosis)
Human herpesvirus 8 (Kaposi sarcoma)
Herpes simplex virus
Human herpesvirus 6 (Roseola)
Adenovirus
Parvovirus B19
Human papillomavirus
BK virus (Hemorrhagic cystitis)
JC virus (Progressive multifocal leukoencephalopathy)
Poliovirus
Coxsackievirus
Rhinovirus
Hepatitis A and Hepatitis E virus
Influenza virus
Mumps virus
Measles virus
Respiratory syncytial virus
Human parainfluenza viruses
Yellow fever virus
Zika virus
Hepatitis C virus
West Nile virus
Norovirus
Rotavirus
HIV (AIDS)
Rabies virus
Rubella virus
Staphylococcus epidermidis
Staphylococcus aureus
Staphylococcus saprophyticus
Streptococcus viridans
Streptococcus pneumoniae
Streptococcus pyogenes (Group A Strep)
Streptococcus agalactiae (Group B Strep)
Enterococcus
Clostridium perfringens
Clostridium botulinum (Botulism)
Clostridium difficile (Pseudomembranous colitis)
Clostridium tetani (Tetanus)
Bacillus cereus (Food poisoning)
Listeria monocytogenes
Corynebacterium diphtheriae (Diphtheria)
Bacillus anthracis (Anthrax)
Nocardia
Actinomyces israelii
Escherichia coli
Salmonella (non-typhoidal)
Salmonella typhi (typhoid fever)
Pseudomonas aeruginosa
Enterobacter
Klebsiella pneumoniae
Shigella
Proteus mirabilis
Yersinia enterocolitica
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Serratia marcescens
Bacteroides fragilis
Yersinia pestis (Plague)
Vibrio cholerae (Cholera)
Helicobacter pylori
Campylobacter jejuni
Neisseria meningitidis
Neisseria gonorrhoeae
Moraxella catarrhalis
Francisella tularensis (Tularemia)
Bordetella pertussis (Pertussis/Whooping cough)
Brucella
Haemophilus influenzae
Haemophilus ducreyi (Chancroid)
Pasteurella multocida
Candida
Plasmodium species (Malaria)
Trypanosoma cruzi (Chagas disease)
Integrase and entry inhibitors
Nucleoside reverse transcriptase inhibitors (NRTIs)
Protease inhibitors
Hepatitis medications
Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
Neuraminidase inhibitors
Herpesvirus medications
Introduction to the immune system
Cytokines
Innate immune system
Complement system
T-cell development
B-cell development
MHC class I and MHC class II molecules
T-cell activation
B-cell activation and differentiation
Cell-mediated immunity of CD4 cells
Cell-mediated immunity of natural killer and CD8 cells
Antibody classes
Somatic hypermutation and affinity maturation
VDJ rearrangement
Contracting the immune response and peripheral tolerance
B- and T-cell memory
Vaccinations
Type I hypersensitivity
Type II hypersensitivity
Type III hypersensitivity
Type IV hypersensitivity
HIV (AIDS)
0 / 45 complete
0 / 2 complete
of complete
2022
2021
2020
2019
2018
2017
2016
AIDS retinitis p. 162
AIDS retinitis p. 162
AIDS retinitis p. 162
AIDS and p. 180
Tanner Marshall, MS
HIV, or human immunodeficiency virus, is a virus that targets cells in the immune system.
Over time, the immune system begins to fail which is called immunodeficiency, and this increases the risk of infections and tumors that a healthy immune system would usually be able to fend off.
These complications are referred to as AIDS, or acquired immunodeficiency syndrome.
Now there are two distinct types of HIV—HIV-1 and HIV-2.
HIV-1 is the more commonly associated with AIDS in the US and worldwide, HIV-2 is more rare, and typically restricted to areas in western Africa and southern Asia.
HIV-2 is so uncommon that “HIV” almost always refers to HIV-1.
Alright HIV targets CD4+ cells, meaning cells that have this specific molecule called CD4 on their membrane. Macrophages, T-helper cells, and dendritic cells are all involved in the immune response and all have CD4 molecules; therefore they can be targeted by HIV.
The CD4 molecule helps these cells attach to and communicate with other immune cells, which is particularly important when the cells are launching attacks against foreign pathogens.
So this little molecule is pretty important for our immune system, but it’s also extremely important for HIV. HIV targets and attaches to the CD4 molecule via a protein called gp120 found on its envelope.
HIV then again uses gp120 to attach to another receptor, called a co-receptor.
HIV needs to bind to both the CD4 molecule and a coreceptor to get inside the cell.
The most common co-receptors that HIV uses are the CXCR4 co-receptor, which is found mainly on T-cells, or the CCR5 co-receptor which is found on T-cells, macrophages, monocytes, and dendritic cells.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.