test

00:00 / 00:00

Hyper IgM syndrome

NMBE hematoinmuno

NMBE hematoinmuno

Blood histology
Blood components
Erythropoietin
Blood groups and transfusions
Platelet plug formation (primary hemostasis)
Coagulation (secondary hemostasis)
Role of Vitamin K in coagulation
Clot retraction and fibrinolysis
Iron deficiency anemia
Beta-thalassemia
Alpha-thalassemia
Sideroblastic anemia
Anemia of chronic disease
Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Immune thrombocytopenia
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Multiple myeloma
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Ribonucleotide reductase inhibitors
Topoisomerase inhibitors
Platinum containing medications
Anti-tumor antibiotics
Microtubule inhibitors
DNA alkylating medications
Monoclonal antibodies
Antimetabolites for cancer treatment
Thymus histology
Spleen histology
Lymph node histology
Cytokines
Innate immune system
Complement system
T-cell development
B-cell development
MHC class I and MHC class II molecules
T-cell activation
B-cell activation and differentiation
Antibody classes
Type I hypersensitivity
Type II hypersensitivity
Type III hypersensitivity
Type IV hypersensitivity
Graft-versus-host disease
X-linked agammaglobulinemia
Selective immunoglobulin A deficiency
Common variable immunodeficiency
IgG subclass deficiency
Hyperimmunoglobulin E syndrome
Thymic aplasia
DiGeorge syndrome
Severe combined immunodeficiency
Adenosine deaminase deficiency
Ataxia-telangiectasia
Hyper IgM syndrome
Wiskott-Aldrich syndrome
Leukocyte adhesion deficiency
Chediak-Higashi syndrome
Chronic granulomatous disease
Complement deficiency
Hereditary angioedema
Asplenia
Mycobacterium tuberculosis (Tuberculosis)
Anemia: Clinical
ELISA (Enzyme-linked immunosorbent assay)
HIV and AIDS: Pathology review
HIV (AIDS)
Atopic dermatitis
Papulosquamous and inflammatory skin disorders: Pathology review
Bullous pemphigoid
Pemphigus vulgaris
Stevens-Johnson syndrome
Erythema multiforme
Antiplatelet medications
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review

Evaluaciones

Flashcards

0 / 6 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

10 pages

Flashcards

Hyper IgM syndrome

0 de 6 completadas

Preguntas

Preguntas del estilo USMLE® Step 1

0 de 1 completadas

A 2-year-old boy is brought to his primary care physician’s office for evaluation of recurrent pulmonary infections and failure to thrive. Since birth, the parents report the patient has had two episodes of pneumococcal pneumonia and five episodes of otitis media. He recently recovered from a diarrheal illness caused by Cryptosporidium parvum. His vaccinations are up to date, and he does not take any medications. Family history is significant for similar symptoms in the patient’s brother, who died from pneumococcal pneumonia last year. Temperature is 37.2 C (99 F), pulse is 80/min, respirations are 20/min and blood pressure is 90/55 mmHg. Physical examination reveals a child who is small for his age. Laboratory results are shown below.

 
 Laboratory value  Result 
 Complete blood count 
 Hemoglobin  12  g/dL 
 Leukocyte count  10,100 /mm3 
 Platelet count  200,000/mm3 
 Immunoglobulins 
 IgG  250 mg/dL 
 IgA  24 mg/dL 
 IgM  700 mg/dL 
 IgE  undetectable 
 CD4/CD8 ratio  2 (normal, 1-4) 

This patient’s condition is most likely caused by a failure of which of the following processes?

External References

First Aid

2024

2023

2022

2021

Cryptosporidium spp. p. 152

hyper-IgM syndrome and p. 115

Cytomegalovirus (CMV)

hyper-IgM syndrome and p. 115

Hyper-IgM syndrome p. 115

IgA antibodies p. 103

hyper-IgM syndrome p. 115

IgE antibodies p. 103

hyper-IgM syndrome p. 115

IgG antibodies p. 103

hyper-IgM syndrome p. 115

IgM antibodies p. 103

hyper-IgM syndrome p. 115

X-linked recessive disorders

hyper-IgM syndrome p. 115

Transcripción

Ver video solo

Hyper IgM syndrome is a problem where B cells are unable to undergo antibody class-switching, meaning that they can produce IgM antibodies, or immunoglobulins, but struggle to produce other types of antibodies, and that leaves individuals at risk for certain infections.

Let’s take a look at how B cells end up secreting different types of antibodies. Each B cell is born in the bone marrow from a stem cell and develops its own B cell receptor, which sits on the cell surface. The B cell receptor consists of two parts - a protein called CD79 that communicates with the rest of the cell and a membrane bound IgM or IgD antibody that can bind to an antigen. An antigen is any substance recognized by that particular antibody.

Each antibody has two identical light chains and two identical heavy chains that combine into a Y shape. So this Y-shaped antibody’s got two arms with identical tips, which is called the variable region. This variable region contains an antigen binding domain that’s unique to that antibody.

Below the variable region, or toward the point where the arms meet, is the constant region where every member of an antibody class is identical – so all IgM antibodies have the same constant region, but IgM and IgA constant regions are different.

And there are five classes of antibodies in total: IgM, IgG, IgA, IgE, and IgD class antibodies. And each antibody class has a slightly different job. For example, IgMs are part of B cell receptors, and are the first free-floating antibodies produced in an immune response. They’re secreted as a pentamer, meaning there are five antibodies connected together, which provides many binding sites for grabbing antigens and taking them out of the blood. Each antibody has complement protein binding sites on the heavy chains, so these IgM pentamers are also great at activating complement proteins, which help destroy and remove pathogens.

IgG antibodies stick to the surface of bacteria and viruses – and that prevents them from adhering to and infecting cells. IgG also allows macrophages and neutrophils to grab and destroy the microbes.

IgA antibodies line mucosal tissues like the gastrointestinal and respiratory tracts and stop microbes from invading in the first place. IgE antibodies work with eosinophils to destroy parasites. And as for IgD antibodies, they’re also used in some B cell receptors, just like IgMs are, but their function as free-floating antibodies is still actually unclear.

Each B cell has over 100,000 B cell receptors spread across its surface, all of which bind the same unique antigen. When a B cell comes in contact with an antigen it recognizes, the B cell internalizes that antigen and presents a piece of it on a major histocompatibility complex class II molecule, or MHC-class II for short.

Fuentes

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "Comprehensive review of autoantibodies in patients with hyper-IgM syndrome" Cellular & Molecular Immunology (2018)
  6. "Primary B-cell immunodeficiencies" Human Immunology (2019)