Hypercalcemia
597,116views

00:00 / 00:00
Assessments
Flashcards
0 / 17 complete
USMLE® Step 1 questions
0 / 3 complete
Flashcards
Hypercalcemia
0 of 17 complete
Questions
USMLE® Step 1 style questions USMLE
0 of 3 complete
Laboratory value | Result |
Serum chemistry | |
Serum calcium | 11.2 mmol/L |
Serum phosphate | 2.4 mmol/L |
Parathyroid hormone* | 560 pg/mL |
Which of the following is the most likely cause of the patient’s presentation?
External References
First Aid
2024
2023
2022
2021
Abdominal pain
hypercalcemia p. 609
Anxiety
hypercalcemia and p. 609
Bladder cancer
hypercalcemia and p. 219
Breast cancer
hypercalcemia and p. 219
Familial hypocalciuric hypercalcemia p. 342
Hypercalcemia p. 609
acute pancreatitis and p. 404
adult T-cell lymphoma p. 435
bisphosphonates for p. 495
calcium carbonate in p. 406
diabetes insipidus p. 349
granulomatous diseases and p. NaN
hyperparathyroidism p. 342
loop diuretics for p. 624
lung cancer p. 703
paraneoplastic syndrome p. 219
PTH-independent p. 348
sarcoidosis and p. 695
succinylcholine p. 565
teriparatide p. 496
thiazides as cause p. 627
Williams syndrome p. 62
Lung cancer p. NaN
hypercalcemia and p. 219
Lymphoma
hypercalcemia and p. 219
Ovarian cancer
hypercalcemia and p. 219
PTH-independent hypercalcemia p. 348
Renal cell carcinomas p. 617
hypercalcemia and p. 219
Squamous cell carcinomas
hypercalcemia and p. 219
Transcript
Content Reviewers
With hypercalcemia, hyper -means over and -calc- refers to calcium, and -emia refers to the blood, so hypercalcemia means higher than normal calcium levels in the blood, generally over 10.5 mg/dL.
Now, calcium exists as an ion with a double positive charge - Ca2+ - and it’s the most abundant metal in the human body.
So I know what you’re thinking - yeah, we’re all pretty much cyborgs,- Cool, huh?
So about 99% of that calcium is in our bones in the form of calcium phosphate, also called hydroxyapatite.
The last 1% is split so that the majority, about 0.99% is extracellular - which means in the blood and in the interstitial space between cells, and 0.01% is intracellular or inside cells.
High levels of intracellular calcium causes cells to die.
In fact, that’s exactly what happens during apoptosis, also known as programmed cell death.
For that reason, cells end up spending a lot of energy just keeping their intracellular calcium levels low.
Now, calcium gets into the cell through two types of channels, or cell doors, within the cell membrane.
The first type are ligand-gated channels, which are what most cells use to let calcium in, and are primarily controlled by hormones or neurotransmitters.
The second type are voltage-gated channels, which are mostly found in muscle and nerve cells and are primarily controlled by changes in the electrical membrane potential.
So calcium flows in through these channels, and to prevent calcium levels from rising too high, cells kick excess calcium right back out with ATP-dependent calcium pumps as well as Na+-Ca2+ exchangers.
In addition, most of the intracellular calcium is stored within organelles like the mitochondria and smooth endoplasmic reticulum and is released selectively just when it's needed.
Now, the majority of the extracellular calcium is split almost equally between two groups - calcium that is diffusible and calcium that is not diffusible.
Diffusible calcium is separated into two subcategories: free-ionized calcium, which is involved in all sorts of cellular processes like neuronal action potentials, contraction of skeletal, smooth, and cardiac muscle, hormone secretion, and blood coagulation, all of which are tightly regulated by enzymes and hormones.
The other category is complexed calcium, which is where the positively charged calcium is ionically linked to tiny negatively charged molecules like oxalate, which is a small anions that’s normally found in our blood in small amounts.
The complexed calcium forms a molecule that’s electrically neutral and small enough to cross cell membranes, but, unlike free-ionized calcium is not useful for cellular processes.
Finally, though, there’s the non-diffusible calcium which is bound to negatively charged proteins like albumin and globulin, and the resulting protein-calcium complex is too large and charged to cross membranes, leaving this calcium also uninvolved in cellular processes.
When the body’s levels of extracellular calcium change, it’s detected by a surface receptor in parathyroid cells called the calcium-sensing receptor.
This affects the amount of parathyroid hormone that gets released by the parathyroid gland.
The parathyroid hormone gets the bones to release calcium, and gets the kidneys to reabsorb more calcium so it's not lost in the urine and synthesize calcitriol also known as active vitamin D.
Active vitamin D then goes on to increase calcium absorption in the gastrointestinal tract.
All together, these effects help to keep the extracellular levels of calcium within a very narrow range, between 8.5 to 10 mg/dl.
Sometimes, though, total calcium levels in the blood, which includes both diffusible and non-diffusible - blood can vary a bit, depending on the blood's pH and protein levels.
This happens because albumin has acidic amino acids, like glutamate and aspartate, which have some carboxyl groups that are in the form of COO- or COOH.
Overall the balance of COOi and COOH changes based on the pH of the blood.
Now, when there’s a low pH, or acidosis, there are plenty of protons or H+ ions floating around, and a lot of those COO- groups pick up a proton and become COOH.
More COOH groups make albumin more positively charged, and since calcium is positively charged, these two repel each other, and this decreases bound calcium and increases the proportion of free ionized calcium in blood.
So as more protons bind albumin, more free ionized calcium builds up in the blood, and so even though total levels calcium are the same, there’s less bound calcium and more ionized calcium, which remember is important for cellular processes and can lead to symptoms of hypercalcemia.
Sources
- "Robbins Basic Pathology" Elsevier (2017)
- "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
- "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
- "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
- "Calcium block of Na <sup>+</sup> channels and its effect on closing rate" Proceedings of the National Academy of Sciences (1999)
- "The diagnosis and management of hypercalcaemia" BMJ (2015)
- "Osborn waves in a hypothermic patient" Journal of Community Hospital Internal Medicine Perspectives (2012)