Hyperthyroidism: Clinical

To be retired ⓘ

00:00 / 00:00



Hyperthyroidism: Clinical

USMLE® Step 2 questions

0 / 14 complete


USMLE® Step 2 style questions USMLE

of complete

A 45-year-old woman presents to the emergency department due to agitation and altered mentation. The patient was in her usual state until a few hours ago, when she started having severe nausea, vomiting, and diarrhea. Medical history is remarkable for long-standing Graves disease and gastroesophageal reflux disease. Last week, the patient had an upper respiratory infection that resolved without treatment. The patient has been partially compliant in taking her medications, which include omeprazole and propylthiouracil. Temperature is 40°C (104.0°F), pulse is 150/min and irregular, and blood pressure is 150/100 mmHg. On physical examination, the patient is stuporous and her skin is moist. Laboratory tests show elevated liver enzymes, mild hyperglycemia, and leukocytosis. IV propranolol is initiated. Which of the following additional medications should also be administered to this patient?


Content Reviewers


Hyperthyroidism, which is sometimes referred to as thyrotoxicosis, is a condition that’s caused by having excess thyroid hormones.

Thyroid hormone production is under the control of the hypothalamus and the pituitary.

The hypothalamus secretes thyrotropin releasing hormone, or TRH, which makes the anterior pituitary secrete thyroid-stimulating hormone, or TSH.

TSH then binds to TSH receptors, which makes the thyroid secrete thyroxine, or T4, and triiodothyronine, or T3, in the blood. But this is not a one-way street - there’s also negative feedback happening, meaning when thyroid hormone levels rise, that inhibits the production of TSH and TRH, halting further production of T3 and T4 - to keep everything in balance.

Normally, some thyroid hormones travel through the bloodstream bound to thyroxine-binding globulin, and some are in their free form.

And the thyroid actually makes more T4 than T3, and that T4 is converted to the more potent T3 in the periphery.

Thyroid hormones then increase the rate of metabolism in all cells, so they make us think, move, and talk faster, and they also increase heat generation. They also activate the sympathetic nervous system, the part of the nervous system responsible for our ‘fight-or-flight’ response, increasing cardiac output.

Thyroid hormones are important - and the occasional increase is like getting a boost to fight off a zombie or to stay warm during a snowstorm!

But with hyperthyroidism, it’s like the entire body is buzzing at twice the normal rate. So individuals with hyperthyroidism tend to be hyperactive and talk really fast, and present with tremor in the extremities - as if they’ve had too much coffee. Also, making so much internal heat makes them sweat a lot and uncomfortable in warm temperatures.


Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.