00:00 / 00:00
Renal system
Metabolic acidosis
Metabolic alkalosis
Respiratory acidosis
Respiratory alkalosis
Acute tubular necrosis
Postrenal azotemia
Prerenal azotemia
Renal azotemia
Horseshoe kidney
Potter sequence
Renal agenesis
Hypercalcemia
Hyperkalemia
Hypermagnesemia
Hypernatremia
Hyperphosphatemia
Hypocalcemia
Hypokalemia
Hypomagnesemia
Hyponatremia
Hypophosphatemia
Hydronephrosis
Kidney stones
Renal cortical necrosis
Renal papillary necrosis
Alport syndrome
Goodpasture syndrome
IgA nephropathy (NORD)
Lupus nephritis
Poststreptococcal glomerulonephritis
Rapidly progressive glomerulonephritis
Amyloidosis
Diabetic nephropathy
Focal segmental glomerulosclerosis (NORD)
Lupus nephritis
Membranoproliferative glomerulonephritis
Membranous nephropathy
Minimal change disease
Acute pyelonephritis
Chronic pyelonephritis
Medullary cystic kidney disease
Medullary sponge kidney
Multicystic dysplastic kidney
Polycystic kidney disease
Chronic kidney disease
Renal tubular acidosis
Angiomyolipoma
Beckwith-Wiedemann syndrome
Nephroblastoma (Wilms tumor)
Renal cell carcinoma
WAGR syndrome
Renal artery stenosis
Acid-base disturbances: Pathology review
Congenital renal disorders: Pathology review
Electrolyte disturbances: Pathology review
Kidney stones: Pathology review
Nephritic syndromes: Pathology review
Nephrotic syndromes: Pathology review
Renal and urinary tract masses: Pathology review
Renal failure: Pathology review
Renal tubular acidosis: Pathology review
Renal tubular defects: Pathology review
Urinary incontinence: Pathology review
Urinary tract infections: Pathology review
Hypomagnesemia
0 / 10 complete
0 / 1 complete
of complete
of complete
With hypomagnesemia, ‘hypo-’ means ‘lower’ and ‘-magnes-’ refers to magnesium, and -emia refers to the blood, so hypomagnesemia means lower than normal magnesium levels in the blood, and symptoms typically develop at a level below 1 mEq/L.
An average adult has about 25 grams of magnesium in their body. About half is stored in the bones, and most of the other half is found within cells.
In fact, magnesium is a really common positively charged ion found within the cell, second only to potassium.
A very tiny fraction, roughly 1% of the total magnesium in the body, is in the extracellular space which includes both the intravascular space - the blood vessels and lymphatic vessels, and the interstitial space - the space between cells.
About 20% of the magnesium in the extracellular space, which would be about 0.2% of the total magnesium, is bound to negatively charged proteins like albumin, but the other 80% or 0.8% of the total magnesium, can be filtered into the kidneys.
So inside the kidney, that magnesium gets filtered into the nephron, and about 30% gets reabsorbed at the proximal convoluted tubule, 60% gets reabsorbed in the ascending loop of Henle, and 5% get reabsorbed at the distal convoluted tubule. And that leaves only 5% to get excreted by the kidneys.
Magnesium levels can fall in a few situations. One scenario is when the nephron fails to reabsorb the magnesium that’s filtered out of the blood, which would mean more would be excreted in the urine instead of kept in the blood.
Magnesium reabsorption is mostly a passive process where the positively charged magnesium ion follows the electrochemical gradient and moves from the positively charged lumen into the cells lining the lumen which usually have a negative charge.
Now, loop and thiazide diuretics can disrupt that process, because they both make the lumen less positively charged, and this diminishes magnesium’s electrochemical gradient and causing more of the ions to stick around in the filtrate and get peed out.
Another sort of similar scenario is a genetic mutation affecting channels that regulate ion flow, which again could change the electrochemical gradient and cause more magnesium to stick around in the lumen and get peed out.
An example of this is Gitelman syndrome, where there’s a mutation in the gene coding for the Na-Cl cotransporters in the distal tubule.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.