00:00 / 00:00
Pathology
Anaphylaxis
Asthma
Food allergy
Type I hypersensitivity
Autoimmune hemolytic anemia
Goodpasture syndrome
Graves disease
Hemolytic disease of the newborn
Myasthenia gravis
Pemphigus vulgaris
Rheumatic heart disease
Type II hypersensitivity
Poststreptococcal glomerulonephritis
Serum sickness
Systemic lupus erythematosus
Type III hypersensitivity
Contact dermatitis
Graft-versus-host disease
Type IV hypersensitivity
Asplenia
Common variable immunodeficiency
Hyperimmunoglobulin E syndrome
IgG subclass deficiency
Isolated primary immunoglobulin M deficiency
Selective immunoglobulin A deficiency
X-linked agammaglobulinemia
Adenosine deaminase deficiency
Ataxia-telangiectasia
Hyper IgM syndrome
Severe combined immunodeficiency
Wiskott-Aldrich syndrome
Complement deficiency
Hereditary angioedema
Cytomegalovirus infection after transplant (NORD)
Post-transplant lymphoproliferative disorders (NORD)
Chediak-Higashi syndrome
Chronic granulomatous disease
Leukocyte adhesion deficiency
Blood transfusion reactions and transplant rejection: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
0 / 7 complete
of complete
Gaia, a 6 year old girl, is brought to the clinic by her parents because she’s been having diarrhea and abdominal cramps for the past few weeks.
When you ask about her clinical history, her parents tell you that Gaia was diagnosed with celiac disease a few years back; however, they point out that she's stopped consuming any food products that may contain gluten altogether.
You decide to first run stool tests, which reveal the presence of the parasite giardia lamblia.
In addition, Gaia’s parents tell you that she has a history of asthma and allergic rhinitis, so you also order an immunoglobulin test, which shows low IgA and increased IgE levels in her blood.
Next comes Joe, a 10 year old boy that’s brought to the clinic because he fell and broke his arm.
Upon physical examination, you notice a red, weeping rash on his scalp.
You also notice that there’s a skin abscess on his leg that lacks any surrounding warmth and redness.
Joe’s parents tell you that he develops abscesses like that all the time.
You order an immunoglobulin test for Joe too, which reveals increased IgE but normal IgA levels.
Based on the initial presentation, both cases seem to have some form of immunodeficiency, meaning that their immune system's ability to fight pathogens is compromised.
Immunodeficiencies can be classified according to the cell of the immune system that is defective, into B cell and T cell disorders, which respectively lead to a deficiency in humoral or antibody-mediated and cell-mediated immune responses.
Let’s begin with B cell disorders, starting with Bruton or X-linked agammaglobulinemia, or XLA for short.
This is caused by a mutation in the BTK gene, which is found on the X chromosome.
XLA is an X-linked recessive condition, so it almost exclusively manifests in biological males because they have only one X chromosome.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.