9,161views
00:00 / 00:00
Genetics
Mendelian genetics and punnett squares
Hardy-Weinberg equilibrium
Inheritance patterns
Independent assortment of genes and linkage
Evolution and natural selection
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Fragile X syndrome
Huntington disease
Myotonic dystrophy
Friedreich ataxia
Turner syndrome
Klinefelter syndrome
Prader-Willi syndrome
Angelman syndrome
Beckwith-Wiedemann syndrome
Cri du chat syndrome
Williams syndrome
Alagille syndrome (NORD)
Achondroplasia
Polycystic kidney disease
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Polycystic kidney disease
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Krabbe disease
Leukodystrophy
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Primary ciliary dyskinesia
Phenylketonuria (NORD)
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Alpha-thalassemia
Beta-thalassemia
Wilson disease
Fragile X syndrome
Alport syndrome
X-linked agammaglobulinemia
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Lesch-Nyhan syndrome
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
Mitochondrial myopathy
Autosomal trisomies: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Miscellaneous genetic disorders: Pathology review
Independent assortment of genes and linkage
0 / 15 complete
0 / 1 complete
of complete
of complete
Victoria S. Recalde, MD
Sam Gillespie, BSc
Pauline Rowsome, BSc (Hons)
Inheritance is possible because of chromosomes.
These chromosomes come in pairs - one from mom and one from dad - so they’re called homologous chromosomes.
Each chromosome has genes, which are segments of DNA that carry genetic information for a specific trait.
And different versions of the same gene are called alleles.
As an example, brown eye color and blue eye color are both alleles for the eye color gene.
And each parent offers one allele of a gene.
Now, these alleles can be either dominant often represented with a capital letter, or recessive, represented with the corresponding lowercase letter, the difference being that it only takes one dominant allele for its traits to be expressed, whereas it takes two recessive alleles for its traits to be expressed.
Human somatic cells - that is, all of the cells aside from the sperm and eggs, which are called gametes - have 23 pairs of chromosomes; 22 somatic pairs and one sexual pair - adding up to 46 chromosomes in total.
These chromosomes, along with the alleles they carry, segregate during meiosis - which is the process of making new gametes.
Gametes only carry half the genetic information of the parent - so 23 chromosomes.
Once the male and female gametes merge during fertilization, their alleles combine to make the genotype —or genetic information— of the new organism.
For every gene, alleles can combine to give rise to three possible genotypes, homozygous dominant - or AA, heterozygous - or Aa - and homozygous recessive - or aa.
This determines all of a person’s features —or phenotype— such as eye color, hair color, or even whether or not they’re color blind.
Now, independent assortment means that no matter which alleles an organism inherits for one gene that codes for a trait like eye color, it won’t affect the alleles it inherits for another gene that codes for a different trait, like hair color.
Let’s start with a simple example. Let’s represent the eye color gene with the letter “a” and the hair color gene with the letter “d”.
Now, the dominant allele for eye color - A - stands for brown eyes and the recessive allele - a - stands for blue eyes.
On the other side, the dominant allele for hair color - D - stands for dark hair while the recessive allele - d - stands for blond hair.
So let’s say we have a person with a heterozygous genotype —Aa— for eye color and heterozygous genotype —Dd— for hair color.
This person would have the dominant allele features - so brown eyes and dark hair, even though they still carry a recessive allele for blond hair and blue eyes.
Genes are randomly assorted during the production of sperm and eggs. This is called independent assortment. This process is responsible for the different combination of genes that children receive from their parents.
If two genes are located close together on a chromosome, they are said to be linked. If these genes are passed on to a child, they will tend to be passed on together.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.