Kidney stones: Pathology review


00:00 / 00:00



Kidney stones: Pathology review

Renal system

Renal and ureteral disorders

Renal agenesis

Horseshoe kidney

Potter sequence











Renal tubular acidosis

Minimal change disease

Diabetic nephropathy

Focal segmental glomerulosclerosis (NORD)


Membranous nephropathy

Lupus nephritis

Membranoproliferative glomerulonephritis

Poststreptococcal glomerulonephritis

Goodpasture syndrome

Rapidly progressive glomerulonephritis

IgA nephropathy (NORD)

Lupus nephritis

Alport syndrome

Kidney stones


Acute pyelonephritis

Chronic pyelonephritis

Prerenal azotemia

Renal azotemia

Acute tubular necrosis

Postrenal azotemia

Renal papillary necrosis

Renal cortical necrosis

Chronic kidney disease

Polycystic kidney disease

Multicystic dysplastic kidney

Medullary cystic kidney disease

Medullary sponge kidney

Renal artery stenosis

Renal cell carcinoma


Nephroblastoma (Wilms tumor)

WAGR syndrome

Beckwith-Wiedemann syndrome

Bladder and urethral disorders

Posterior urethral valves

Hypospadias and epispadias

Vesicoureteral reflux

Bladder exstrophy

Urinary incontinence

Neurogenic bladder

Lower urinary tract infection

Transitional cell carcinoma

Non-urothelial bladder cancers

Renal system pathology review

Congenital renal disorders: Pathology review

Renal tubular defects: Pathology review

Renal tubular acidosis: Pathology review

Acid-base disturbances: Pathology review

Electrolyte disturbances: Pathology review

Renal failure: Pathology review

Nephrotic syndromes: Pathology review

Nephritic syndromes: Pathology review

Urinary incontinence: Pathology review

Urinary tract infections: Pathology review

Kidney stones: Pathology review

Renal and urinary tract masses: Pathology review


Kidney stones: Pathology review

USMLE® Step 1 questions

0 / 5 complete


USMLE® Step 1 style questions USMLE

of complete

A 45-year-old woman comes to the outpatient clinic because of intermittent left flank pain that has been ongoing for the past two weeks. She has noticed blood in her urine on a few occasions. Moreover, the pain has become more severe. She works as a personal trainer. Family and medical history are unremarkable. Temperature is 39.0°C (102.2°F), pulse is 80/minute, respiratory rate is 16/minute, and blood pressure is 130/95 mm Hg. An x-ray is ordered and shown below:

Retrieved from:

Which of the following best describes the composition of this pathological structure?


Content Reviewers

Yifan Xiao, MD


Jung Hee Lee, MScBMC

Anca-Elena Stefan, MD

Sam Gillespie, BSc

Victoria Cumberbatch

In the Emergency Department, two people with similar symptoms came in.

One of them is 35 year old Conrad who has a terrible left flank pain, along with nausea and vomiting and the other one is 40 year old Sam who has left flank pain, but also has dysuria.

An electrolyte panel and urinalysis was done in both individuals.

Results showed that Conrad had normal levels of calcium in the blood, but urinalysis showed hypercalciuria and hematuria.

Sam’s urinalysis showed positive leukocyte esterase, as well as positive nitrites and hematuria. Abdominal CT showed radiopaque masses in their ureters.

Now, the suspicion is that both individuals have kidney stones, but there are actually several types of kidney stones and we need to know what we’re dealing with in order to give the right treatment.

Okay, let’s first talk about how kidney stones form.

Urine’s a combination of water, which acts as a solvent, and all sorts of particles, or solutes.

In general, when certain solutes become too concentrated in the solvent, they become supersaturated.

Urinary supersaturation of certain solutes results in precipitation out of the solution and formation of crystals.

Those crystals then act as a nidus, or place where more solutes can deposit and over time it builds up a crystalline structure.

This can happen if there’s an increase in the solute, or a decrease in the solvent, as would be the case with dehydration.

This means that dehydration leads to a low urine volume which can further put a person at risk for kidney stones.

Okay, let’s now talk about the different types of stones.

There are four main types of stones.

Calcium stones are present in about 80 percent of the cases, while struvite stones are present in about 15 percent of the cases and uric acid stones are present in about 5 percent of the cases.

Finally, a super rare type of stone is a cysteine stone.


  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Practical Renal Pathology, A Diagnostic Approach E-Book" Elsevier Health Sciences (2012)
  4. "An Update and Practical Guide to Renal Stone Management" Nephron Clinical Practice (2010)
  5. "Kidney stone disease" Journal of Clinical Investigation (2005)
  6. "HELICAL CT OF URINARY TRACT STONES" Radiologic Clinics of North America (1999)

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.