Laxatives and cathartics

18,270views

test

00:00 / 00:00

Laxatives and cathartics

Back to the Basic Sciences

Diagnoses

Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Coronary artery disease: Pathology review
Anticoagulants: Direct factor inhibitors
Anticoagulants: Heparin
Antiplatelet medications
Thrombolytics
Renal failure: Pathology review
ACE inhibitors, ARBs and direct renin inhibitors
Anatomy of the lungs and tracheobronchial tree
Anatomy clinical correlates: Pleura and lungs
Alveolar surface tension and surfactant
Breathing cycle and regulation
Gas exchange in the lungs, blood and tissues
Pulmonary shunts
Regulation of pulmonary blood flow
Respiratory system anatomy and physiology
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Zones of pulmonary blood flow
Obstructive lung diseases: Pathology review
Anatomy of the abdominal viscera: Liver, biliary ducts and gallbladder
Anatomy clinical correlates: Other abdominal organs
Bile secretion and enterohepatic circulation
Liver anatomy and physiology
Cirrhosis: Pathology review
Anatomy of the heart
Anatomy of the coronary circulation
Anatomy of the inferior mediastinum
Anatomy of the superior mediastinum
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Mediastinum
Cardiac afterload
Cardiac contractility
Cardiac cycle
Cardiac preload
Cardiac work
Cardiovascular system anatomy and physiology
Changes in pressure-volume loops
Frank-Starling relationship
Measuring cardiac output (Fick principle)
Microcirculation and Starling forces
Pressure-volume loops
Stroke volume, ejection fraction, and cardiac output
Heart failure: Pathology review
Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Cardiovascular system anatomy and physiology
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Anatomy of the cerebral cortex
Anatomy of the limbic system
Anatomy clinical correlates: Cerebral hemispheres
Dementia: Pathology review
Mood disorders: Pathology review
Selective serotonin reuptake inhibitors
Serotonin and norepinephrine reuptake inhibitors
Tricyclic antidepressants
Monoamine oxidase inhibitors
Atypical antidepressants
Pancreas histology
Diabetes mellitus: Pathology review
Dyslipidemias: Pathology review
Lipid-lowering medications: Fibrates
Lipid-lowering medications: Statins
Miscellaneous lipid-lowering medications
Enteric nervous system
Esophageal motility
Gastrointestinal system anatomy and physiology
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Hypertension: Pathology review
ACE inhibitors, ARBs and direct renin inhibitors
Adrenergic antagonists: Beta blockers
Calcium channel blockers
Thiazide and thiazide-like diuretics
Anatomy of the thyroid and parathyroid glands
Thyroid and parathyroid gland histology
Endocrine system anatomy and physiology
Thyroid hormones
Hyperthyroidism: Pathology review
Anatomy of the thyroid and parathyroid glands
Thyroid and parathyroid gland histology
Endocrine system anatomy and physiology
Thyroid hormones
Hypothyroidism: Pathology review
Introduction to the skeletal system
Bone remodeling and repair
Bone disorders: Pathology review
Anatomy of the abdominal viscera: Pancreas and spleen
Anatomy clinical correlates: Other abdominal organs
Pancreas histology
Pancreatic secretion
Pancreatitis: Pathology review
Anatomy of the diaphragm
Anatomy of the larynx and trachea
Anatomy of the lungs and tracheobronchial tree
Anatomy of the nose and paranasal sinuses
Anatomy of the pleura
Bones and joints of the thoracic wall
Muscles of the thoracic wall
Vessels and nerves of the thoracic wall
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Alveolar surface tension and surfactant
Anatomic and physiologic dead space
Breathing cycle and regulation
Gas exchange in the lungs, blood and tissues
Lung volumes and capacities
Pulmonary shunts
Regulation of pulmonary blood flow
Respiratory system anatomy and physiology
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Zones of pulmonary blood flow
Pneumonia: Pathology review
Drug misuse, intoxication and withdrawal: Alcohol: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Drug misuse, intoxication and withdrawal: Other depressants: Pathology review
Drug misuse, intoxication and withdrawal: Stimulants: Pathology review
Atypical antidepressants
Nasal, oral and pharyngeal diseases: Pathology review
Anatomy of the abdominal viscera: Kidneys, ureters and suprarenal glands
Anatomy of the female urogenital triangle
Anatomy of the male urogenital triangle
Anatomy of the perineum
Anatomy of the urinary organs of the pelvis
Anatomy clinical correlates: Female pelvis and perineum
Anatomy clinical correlates: Male pelvis and perineum
Renal system anatomy and physiology
Urinary tract infections: Pathology review
Anatomy of the lungs and tracheobronchial tree
Fascia, vessels and nerves of the upper limb
Vessels and nerves of the forearm
Vessels and nerves of the gluteal region and posterior thigh
Anatomy clinical correlates: Pleura and lungs
Clot retraction and fibrinolysis
Coagulation (secondary hemostasis)
Platelet plug formation (primary hemostasis)
Deep vein thrombosis and pulmonary embolism: Pathology review
Anticoagulants: Direct factor inhibitors
Anticoagulants: Heparin
Anticoagulants: Warfarin

Clinical conditions

Abdominal quadrants, regions and planes
Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the abdominal viscera: Esophagus and stomach
Anatomy of the abdominal viscera: Innervation of the abdominal viscera
Anatomy of the abdominal viscera: Large intestine
Anatomy of the abdominal viscera: Liver, biliary ducts and gallbladder
Anatomy of the abdominal viscera: Pancreas and spleen
Anatomy of the abdominal viscera: Small intestine
Anatomy of the anterolateral abdominal wall
Anatomy of the diaphragm
Anatomy of the gastrointestinal organs of the pelvis and perineum
Anatomy of the inguinal region
Anatomy of the muscles and nerves of the posterior abdominal wall
Anatomy of the peritoneum and peritoneal cavity
Anatomy of the vessels of the posterior abdominal wall
Anatomy clinical correlates: Anterior and posterior abdominal wall
Anatomy clinical correlates: Inguinal region
Anatomy clinical correlates: Other abdominal organs
Anatomy clinical correlates: Peritoneum and diaphragm
Anatomy clinical correlates: Viscera of the gastrointestinal tract
Appendicitis: Pathology review
Diverticular disease: Pathology review
Gallbladder disorders: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Pancreatitis: Pathology review
Acid-base map and compensatory mechanisms
Buffering and Henderson-Hasselbalch equation
Physiologic pH and buffers
The role of the kidney in acid-base balance
Acid-base disturbances: Pathology review
Anatomy of the abdominal viscera: Kidneys, ureters and suprarenal glands
Kidney histology
Renal system anatomy and physiology
Renal failure: Pathology review
Anatomy of the basal ganglia
Anatomy of the blood supply to the brain
Anatomy of the brainstem
Anatomy of the cerebellum
Anatomy of the cerebral cortex
Anatomy of the cranial meninges and dural venous sinuses
Anatomy of the diencephalon
Anatomy of the limbic system
Anatomy of the ventricular system
Anatomy of the white matter tracts
Anatomy clinical correlates: Anterior blood supply to the brain
Anatomy clinical correlates: Cerebellum and brainstem
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Posterior blood supply to the brain
Nervous system anatomy and physiology
Amnesia, dissociative disorders and delirium: Pathology review
Central nervous system infections: Pathology review
Cerebral vascular disease: Pathology review
Dementia: Pathology review
Drug misuse, intoxication and withdrawal: Alcohol: Pathology review
Drug misuse, intoxication and withdrawal: Hallucinogens: Pathology review
Drug misuse, intoxication and withdrawal: Other depressants: Pathology review
Drug misuse, intoxication and withdrawal: Stimulants: Pathology review
Mood disorders: Pathology review
Schizophrenia spectrum disorders: Pathology review
Seizures: Pathology review
Traumatic brain injury: Pathology review
Anticonvulsants and anxiolytics: Benzodiazepines
Atypical antipsychotics
Typical antipsychotics
Blood histology
Blood components
Erythropoietin
Extrinsic hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Introduction to the central and peripheral nervous systems
Introduction to the muscular system
Introduction to the skeletal system
Introduction to the somatic and autonomic nervous systems
Anatomy of the ascending spinal cord pathways
Anatomy of the descending spinal cord pathways
Anatomy of the muscles and nerves of the posterior abdominal wall
Anatomy of the vertebral canal
Anatomy of the vessels of the posterior abdominal wall
Bones of the vertebral column
Joints of the vertebral column
Muscles of the back
Vessels and nerves of the vertebral column
Anatomy clinical correlates: Anterior and posterior abdominal wall
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Spinal cord pathways
Anatomy clinical correlates: Vertebral canal
Back pain: Pathology review
Positive and negative predictive value
Sensitivity and specificity
Test precision and accuracy
Type I and type II errors
Anatomy of the breast
Anatomy of the coronary circulation
Anatomy of the heart
Anatomy of the inferior mediastinum
Anatomy of the lungs and tracheobronchial tree
Anatomy of the pleura
Anatomy of the superior mediastinum
Bones and joints of the thoracic wall
Muscles of the thoracic wall
Vessels and nerves of the thoracic wall
Anatomy clinical correlates: Breast
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Cardiovascular system anatomy and physiology
Respiratory system anatomy and physiology
Aortic dissections and aneurysms: Pathology review
Coronary artery disease: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Anatomy of the abdominal viscera: Esophagus and stomach
Anatomy of the abdominal viscera: Large intestine
Anatomy of the abdominal viscera: Small intestine
Anatomy of the gastrointestinal organs of the pelvis and perineum
Gastrointestinal system anatomy and physiology
Enteric nervous system
Colorectal polyps and cancer: Pathology review
Diverticular disease: Pathology review
Laxatives and cathartics
Anatomy of the diaphragm
Anatomy of the larynx and trachea
Anatomy of the lungs and tracheobronchial tree
Anatomy of the nose and paranasal sinuses
Anatomy of the pleura
Bones and joints of the thoracic wall
Muscles of the thoracic wall
Vessels and nerves of the thoracic wall
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Lung cancer and mesothelioma: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Obstructive lung diseases: Pathology review
Pneumonia: Pathology review
Restrictive lung diseases: Pathology review
Anatomy of the abdominal viscera: Large intestine
Anatomy of the abdominal viscera: Small intestine
Anatomy of the gastrointestinal organs of the pelvis and perineum
Bile secretion and enterohepatic circulation
Enteric nervous system
Gastrointestinal system anatomy and physiology
Inflammatory bowel disease: Pathology review
Malabsorption syndromes: Pathology review
Bacillus cereus (Food poisoning)
Campylobacter jejuni
Clostridium difficile (Pseudomembranous colitis)
Clostridium perfringens
Escherichia coli
Norovirus
Salmonella (non-typhoidal)
Shigella
Staphylococcus aureus
Vibrio cholerae (Cholera)
Yersinia enterocolitica
Anatomy of the heart
Anatomy of the lungs and tracheobronchial tree
Anatomy of the pleura
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Alveolar surface tension and surfactant
Anatomic and physiologic dead space
Breathing cycle and regulation
Diffusion-limited and perfusion-limited gas exchange
Gas exchange in the lungs, blood and tissues
Pulmonary shunts
Regulation of pulmonary blood flow
Respiratory system anatomy and physiology
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Zones of pulmonary blood flow
Cardiac afterload
Cardiac contractility
Cardiac cycle
Cardiac preload
Cardiac work
Frank-Starling relationship
Measuring cardiac output (Fick principle)
Pressure-volume loops
Stroke volume, ejection fraction, and cardiac output
Acid-base map and compensatory mechanisms
Buffering and Henderson-Hasselbalch equation
Physiologic pH and buffers
The role of the kidney in acid-base balance
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Heart failure: Pathology review
Lung cancer and mesothelioma: Pathology review
Obstructive lung diseases: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Pneumonia: Pathology review
Restrictive lung diseases: Pathology review
Tuberculosis: Pathology review
Introduction to the cardiovascular system
Introduction to the lymphatic system
Microcirculation and Starling forces
Cirrhosis: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Heart failure: Pathology review
Hypothyroidism: Pathology review
Nephrotic syndromes: Pathology review
Renal failure: Pathology review
Antidiuretic hormone
Phosphate, calcium and magnesium homeostasis
Potassium homeostasis
Renin-angiotensin-aldosterone system
Sodium homeostasis
Diabetes insipidus and SIADH: Pathology review
Electrolyte disturbances: Pathology review
Parathyroid disorders and calcium imbalance: Pathology review
Anxiety disorders, phobias and stress-related disorders: Pathology Review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Mood disorders: Pathology review
Psychological sleep disorders: Pathology review
Adrenergic antagonists: Beta blockers
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Antihistamines for allergies
Nonbenzodiazepine anticonvulsants
Opioid agonists, mixed agonist-antagonists and partial agonists
Tricyclic antidepressants
Cytokines
Inflammation
Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the abdominal viscera: Esophagus and stomach
Anatomy of the abdominal viscera: Large intestine
Anatomy of the abdominal viscera: Small intestine
Anatomy of the gastrointestinal organs of the pelvis and perineum
Anatomy of the vessels of the posterior abdominal wall
Anatomy clinical correlates: Viscera of the gastrointestinal tract
Gastrointestinal bleeding: Pathology review
Anatomy of the blood supply to the brain
Anatomy of the cranial base
Anatomy of the cranial meninges and dural venous sinuses
Anatomy of the nose and paranasal sinuses
Anatomy of the suboccipital region
Anatomy of the temporomandibular joint and muscles of mastication
Anatomy of the trigeminal nerve (CN V)
Bones of the cranium
Bones of the neck
Deep structures of the neck: Prevertebral muscles
Muscles of the face and scalp
Nerves and vessels of the face and scalp
Superficial structures of the neck: Cervical plexus
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Temporal regions, oral cavity and nose
Anatomy clinical correlates: Trigeminal nerve (CN V)
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Headaches: Pathology review
Anatomy of the abdominal viscera: Liver, biliary ducts and gallbladder
Anatomy of the abdominal viscera: Pancreas and spleen
Anatomy clinical correlates: Other abdominal organs
Gallbladder histology
Liver histology
Bile secretion and enterohepatic circulation
Liver anatomy and physiology
Pancreatic secretion
Jaundice: Pathology review
Anatomy of the elbow joint
Anatomy of the glenohumeral joint
Anatomy of the hip joint
Anatomy of the knee joint
Anatomy of the radioulnar joints
Anatomy of the sternoclavicular and acromioclavicular joints
Anatomy of the tibiofibular joints
Joints of the ankle and foot
Joints of the wrist and hand
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Wrist and hand
Gout and pseudogout: Pathology review
Rheumatoid arthritis and osteoarthritis: Pathology review
Seronegative and septic arthritis: Pathology review
Anatomy of the knee joint
Anatomy clinical correlates: Knee
Rheumatoid arthritis and osteoarthritis: Pathology review
Seronegative and septic arthritis: Pathology review
Candida
Clostridium difficile (Pseudomembranous colitis)
Enterobacter
Enterococcus
Escherichia coli
Proteus mirabilis
Pseudomonas aeruginosa
Staphylococcus aureus
Bacterial and viral skin infections: Pathology review
Skin histology
Skin anatomy and physiology
Acneiform skin disorders: Pathology review
Papulosquamous and inflammatory skin disorders: Pathology review
Pigmentation skin disorders: Pathology review
Skin cancer: Pathology review
Vesiculobullous and desquamating skin disorders: Pathology review
Anatomy of the heart
Anatomy of the vagus nerve (CN X)
Aortic dissections and aneurysms: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Heart blocks: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Ventricular arrhythmias: Pathology review
Hunger and satiety
Anxiety disorders, phobias and stress-related disorders: Pathology Review
Breast cancer: Pathology review
Colorectal polyps and cancer: Pathology review
Dementia: Pathology review
Diabetes mellitus: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Heart failure: Pathology review
HIV and AIDS: Pathology review
Hyperthyroidism: Pathology review
Inflammatory bowel disease: Pathology review
Jaundice: Pathology review
Lung cancer and mesothelioma: Pathology review
Malabsorption syndromes: Pathology review
Mood disorders: Pathology review
Tuberculosis: Pathology review

Assessments

Flashcards

0 / 8 complete

USMLE® Step 1 questions

0 / 2 complete

USMLE® Step 2 questions

0 / 6 complete

High Yield Notes

9 pages

Flashcards

Laxatives and cathartics

0 of 8 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 2 complete

USMLE® Step 2 style questions USMLE

0 of 6 complete

A 68-year-old woman presents to the hospital for routine colonoscopy screening. The patient’s first screening colonoscopy 10 years ago was normal without any polyps. The patient has chronic constipation and routinely takes senna to help promote bowel movements. Prior to the colonoscopy, vital signs are unremarkable.  Physical exam does not show any abdominal distention or tenderness to palpation. During colonoscopy, dark pigmented spots are visualized in multiple locations throughout the colon. Which of the following most likely caused these findings on this patient’s colonoscopy?  

External References

First Aid

2024

2023

2022

2021

Diarrhea

magnesium hydroxide p. 406

Hyporeflexia

magnesium hydroxide and p. 406

Hypotension

magnesium hydroxide and p. 406

Magnesium hydroxide p. 406

Transcript

Watch video only

Laxatives and cathartics are medications that increase the passage of stool.

Laxatives ease the passage of fully formed fecal matter from the rectum; while cathartics have a stronger effect, and cause the evacuation of the entire colon, usually in the form of watery, unformed stool.

Some medications can function both as a laxative and a cathartic, depending on the dosage.

Both types of medications are used to treat constipation, which is partly characterized by a decrease in stool passage frequency; small, hard stools; or difficulty with initiating bowel movements.

Normal stool frequency is usually at least 3 times per week for someone on a typical Western diet.

Now, the small and large intestines are where most of the absorption happens in the GI tract.

The small intestine contains smooth muscles that perform peristalsis, which is a series of coordinated wave-like muscle contractions that help push the food bolus through the GI tract.

Lining the luminal surface of the intestine is a layer called the mucosa, which absorbs nutrients or secretes different molecules, like ions and water, into the lumen.

The undigested component of the food bolus eventually reaches the large intestine and becomes feces or stool.

The large intestine mainly absorbs excess water from the stool and that helps condense it into a more solid form.

However, stool should still be 70-80% water by weight, so if the feces becomes too dry, it could condense into a large, hard mass that’s difficult to pass.

So instead of peristalsis, which only pushes the food bolus in one direction, the colon undergoes segmental contraction, which pushes the feces in both directions within the haustra to constantly mix it with water; kind of like how a cement truck keeps churning to keep the cement from drying.

Now, constipation can occur due to a poor diet or a malfunction within the GI tract itself, although, up to 60 percent of chronic constipation does not have a clear cause.

One of the most important dietary factors is the lack of fiber, which is the part of food that resists digestion and reaches the colon relatively unchanged.

Fiber usually comes from plants like fruits and vegetables.

They get incorporated into the stool where they absorb water, causing the stool to swell and bulk up, which prevents it from hardening, while also making it easier to pass.

Another cause of constipation is due to decreased motility of the GI tract, which could be caused by disorders like irritable bowel syndrome, or medications like opioids.

In either case, it takes longer for the digested food to travel through the GI tract, so more water is absorbed, and the stool hardens.

When this hardened stool forms a large mass that’s difficult to pass, it’s called a fecal impaction, and it could lead to large bowel obstructions.

A large colonic carcinoma or an inflamed and swollen diverticulum can cause a blockage in the colon, which could lead to constipation.

Finally, problems like anal fissures and hemorrhoids can make defecation so painful that the person will voluntarily avoid passing stool.

The longer the stool stays in the colon, the harder it will become, ultimately making the situation worse.

Medications that are used to manage constipation include: bulk forming agents, stimulant laxatives, osmotic laxatives, and stool softeners.

Let’s start with bulk-forming agents, which include methylcellulose and psyllium.

These fibrous compounds are composed of polysaccharide polymers from plants.

In addition, bulk-forming agents also include synthetic fibers, such as polycarbophil.

Now these medications are taken perorally and can’t be digested by the enzymes in our GI tract.

So these fibers end up getting incorporated into the stool, where they draw in more water, making the stool swell up into a soft, bulky mass, kind of like a stinky sponge.

This increase in size stimulates intestinal motility and the softer stool is also easier to pass.

Bulking agents are great for long-term treatment of constipation but they can also be used to treat acute diarrhea.

Except bloating and flatulence, they don’t have many side effects; but it’s important to note that they should be taken with fluids to avoid fecal impaction.

Finally, they are contraindicated in those with intestinal obstruction as the increased stool mass could worsen the blockage.

Next are the stool softeners, which are also known as emollient laxatives.

The main representative of this group is docusate, which can be taken peroral or per rectum, as a suppository.

Normally water and lipids don’t mix, so the fats in stool could prevent water from entering.

Docusate is a surfactant, which means it has a hydrophilic head that’s water soluble, and a hydrophobic tail that’s water insoluble, so it sticks out into the lipids.

This disrupts the normal surface tension between water and fat, which allows the water to penetrate the stool and make it softer.

Although docusate is widely used, it’s shown to have low efficacy for the treatment of constipation.

However, it can be used to prevent constipation and minimize straining during defecation in hospitalized individuals.

As far as side effects go, docusate can cause diarrhea because it increases intestinal fluid and electrolyte secretion.

Next are the osmotic laxatives, which include saline laxatives, such as magnesium sulfate, magnesium hydroxide, magnesium citrate, and sodium phosphate,; and indigestible alcohols and sugars, like polyethylene glycol, polyethylene glycol-electrolyte solution, and lactulose.

Both magnesium cations and phosphate anions are not well absorbed, so they draw more water out of the cells in the intestinal wall via osmosis and increase the amount of water in the lumen.

This increases intestinal motility, which pushes the stool through the GI tract and also helps mix the stool with water.

Besides treating constipation, magnesium citrate and sodium phosphate can be given rectally to cleanse the bowels before procedures like colonoscopies or surgeries, kind of like using a drain cleaner to clean dirty pipes.

The downside of these medications is that they can cause diarrhea and fluid loss; therefore, individuals treated with saline laxatives should increase fluid intake to prevent dehydration.

In addition, magnesium- and phosphate- containing medications should be avoided in small children and individuals with renal impairment, cardiac conditions, or pre-existing electrolyte disbalance since these individuals are associated with an increased risk of hypermagnesemia and hyperphosphatemia.

Moreover, hypermagnesemia complications include heart block, neuromuscular block, and central nervous system depression; while hyperphosphatemia can lead to acute renal failure due to tubular deposition of calcium phosphate; but also metabolic acidosis, hypocalcemia, tetany, and even death.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Physiology" Elsevier (2017)
  5. "How Useful Is Docusate in Patients at Risk for Constipation? A Systematic Review of the Evidence in the Chronically Ill" Journal of Pain and Symptom Management (2000)
  6. "Systematic Review of Stimulant and Nonstimulant Laxatives for the Treatment of Functional constipation" Canadian Journal of Gastroenterology and Hepatology (2014)