13,905views
00:00 / 00:00
Hematological system
Iron deficiency anemia
Beta-thalassemia
Alpha-thalassemia
Sideroblastic anemia
Anemia of chronic disease
Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Anemia of chronic disease
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Fanconi anemia
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Lead poisoning
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Immune thrombocytopenic purpura
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Leukemoid reaction
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Mastocytosis (NORD)
Multiple myeloma
Monoclonal gammopathy of undetermined significance
Waldenstrom macroglobulinemia
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Leukemias: Pathology review
0 / 8 complete
of complete
Laboratory value | Result |
Complete blood count | |
Hemoglobin | 9.3 g/dL |
Platelets | 70,000/mm3 |
Leukocytes | 6,000/mm3 |
Zachary Kevorkian, MSMI
Maria Emfietzoglou, MD
Alex Aranda
Tanner Marshall, MS
A 65-year old male, named Mike is admitted to the hospital for a lower respiratory tract infection.
He complains of easy bruising for the past months, and a few hours after admission, he rapidly deteriorates and starts to bleed from venipuncture sites.
Lab tests show low platelet count, and bleeding time, PT and PTT are prolonged.
Fibrinogen is decreased and d-dimers are elevated.
Peripheral blood smear shows schistocytes. Bone marrow biopsy shows more than 30% blast cells with Auer rods in the cytoplasm.
Next, there’s a mother with her 5-year old son, Luke.
Luke’s mother has noticed that he’s been less active and had recurrent upper respiratory tract infections in the past few months.
Clinical examination reveals diffuse lymphadenopathy. CBC shows anemia and leukopenia, while bone marrow biopsy shows more than 30% blast cells.
The last person is a 40-year old female, named Mia, who complains of recurrent upper respiratory tract infection, progressive fatigue, and abdominal fullness.
Clinical examination revealed severe splenomegaly. CBC shows anemia, increased WBCs, while blood smear shows increased granulocytes and immature forms of myeloid cells.
The lap score is low. Bone marrow biopsy shows blast count of 8%.
Okay, so all three people have leukemia.
Leukemias can occur when there’s uncontrolled proliferation of immature white blood cells.
The most immature type of cells are called blast cells, but sometimes cells near maturity that resemble normal white blood cells can also be affected.
Whatever the stage, these abnormal cells accumulate in the bone marrow or blood.
This differentiates them from lymphomas which can also arise from white blood cells, but they typically form solid tumors in lymphatic tissue such as lymph nodes, thymus, or spleen.
Leukemias are most commonly caused by genetic mutations.
These mutations can be chromosomal deletions, where part of a chromosome is missing; trisomies, where there’s one extra chromosome; and translocations, where two chromosomes break and swap parts with one another.
Regardless of the type of mutation, these abnormal cells can lead to a decreased levels of functional white blood cells, which weakens the immune system and results in increased susceptibility to infections.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.