Lipid-lowering medications: Fibrates

18,539views

00:00 / 00:00

Videos

Notes

Lipid-lowering medications: Fibrates

Medicine and surgery

Allergy and immunology

Antihistamines for allergies

Glucocorticoids

Cardiology, cardiac surgery and vascular surgery

Coronary artery disease: Clinical (To be retired)

Heart failure: Clinical (To be retired)

Syncope: Clinical (To be retired)

Hypertension: Clinical (To be retired)

Hypercholesterolemia: Clinical (To be retired)

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Adrenergic antagonists: Alpha blockers

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

Thiazide and thiazide-like diuretics

Calcium channel blockers

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Dermatology and plastic surgery

Hypersensitivity skin reactions: Clinical (To be retired)

Eczematous rashes: Clinical (To be retired)

Papulosquamous skin disorders: Clinical (To be retired)

Alopecia: Clinical (To be retired)

Hypopigmentation skin disorders: Clinical (To be retired)

Benign hyperpigmented skin lesions: Clinical (To be retired)

Skin cancer: Clinical (To be retired)

Endocrinology and ENT (Otolaryngology)

Diabetes mellitus: Clinical (To be retired)

Hyperthyroidism: Clinical (To be retired)

Hypothyroidism and thyroiditis: Clinical (To be retired)

Dizziness and vertigo: Clinical (To be retired)

Hyperthyroidism medications

Hypothyroidism medications

Insulins

Hypoglycemics: Insulin secretagogues

Miscellaneous hypoglycemics

Gastroenterology and general surgery

Gastroesophageal reflux disease (GERD): Clinical (To be retired)

Peptic ulcers and stomach cancer: Clinical (To be retired)

Diarrhea: Clinical (To be retired)

Malabsorption: Clinical (To be retired)

Colorectal cancer: Clinical (To be retired)

Diverticular disease: Clinical (To be retired)

Anal conditions: Clinical (To be retired)

Cirrhosis: Clinical (To be retired)

Breast cancer: Clinical (To be retired)

Laxatives and cathartics

Antidiarrheals

Acid reducing medications

Hematology and oncology

Anemia: Clinical (To be retired)

Anticoagulants: Warfarin

Anticoagulants: Direct factor inhibitors

Antiplatelet medications

Infectious diseases

Pneumonia: Clinical (To be retired)

Urinary tract infections: Clinical (To be retired)

Skin and soft tissue infections: Clinical (To be retired)

Protein synthesis inhibitors: Aminoglycosides

Antimetabolites: Sulfonamides and trimethoprim

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Cell wall synthesis inhibitors: Cephalosporins

DNA synthesis inhibitors: Metronidazole

DNA synthesis inhibitors: Fluoroquinolones

Herpesvirus medications

Azoles

Echinocandins

Miscellaneous antifungal medications

Anti-mite and louse medications

Nephrology and urology

Chronic kidney disease: Clinical (To be retired)

Kidney stones: Clinical (To be retired)

Urinary incontinence: Pathology review

ACE inhibitors, ARBs and direct renin inhibitors

PDE5 inhibitors

Adrenergic antagonists: Alpha blockers

Neurology and neurosurgery

Stroke: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Headaches: Clinical (To be retired)

Migraine medications

Pulmonology and thoracic surgery

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Lung cancer: Clinical (To be retired)

Antihistamines for allergies

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Bronchodilators: Leukotriene antagonists and methylxanthines

Pulmonary corticosteroids and mast cell inhibitors

Rheumatology and orthopedic surgery

Joint pain: Clinical (To be retired)

Rheumatoid arthritis: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Glucocorticoids

Opioid agonists, mixed agonist-antagonists and partial agonists

Antigout medications

Non-biologic disease modifying anti-rheumatic drugs (DMARDs)

Osteoporosis medications

Assessments

Lipid-lowering medications: Fibrates

Flashcards

0 / 12 complete

Flashcards

Lipid-lowering medications: Fibrates

of complete

Memory Anchors and Partner Content

External References

First Aid

2022

2021

2020

2019

2018

2017

2016

Bezafibrate p. 327

Transcript

Content Reviewers

Yifan Xiao, MD

Contributors

Evan Debevec-McKenney

Fibrates are a group of lipid-lowering medications, along with statins and niacin.

These medications are very effective at lowering triglyceride levels in the blood, but are less effective at controlling cholesterol.

Now, triglycerides make up most of your body fat, and they consist of a glycerol and 3 fatty acids.

So when we eat a box of chili fries, the fatty acids and cholesterol are absorbed into the cells in the small intestine.

The fatty acids are then converted into triglycerides.

However, triglycerides and cholesterol are not water soluble, so they can’t travel freely in the blood. To fix this, our body makes “shipping boxes” called lipoproteins.

These containers consist of a shell made of phospholipids and protein tags that act as instructions for their destination.

So after absorption, the small intestinal cells package the triglycerides and cholesterol into the largest, but least dense lipoproteins, called chylomicrons.

These are released into the lymphatic system and then enter the bloodstream via the subclavian vein. Then, they travel through the blood to reach the liver and other tissues in the body.

Now in the blood vessels near these tissues, we have an enzyme called lipoprotein lipase, which can break down triglycerides into fatty acids.

Cells in the nearby tissue can then use these fatty acids to generate ATP.

Adipose tissue can synthesize a lot of lipoprotein lipases, which means they have access to a lot of fatty acids.

Now, instead of using the fatty acids for energy, they pick them up, convert them back into triglycerides, and store them for later use.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "PPAR Agonists and Metabolic Syndrome: An Established Role?" International Journal of Molecular Sciences (2018)
  5. "Fibrates for primary prevention of cardiovascular disease events" Cochrane Database of Systematic Reviews (2016)
  6. "PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8+ T Cells and Facilitates Anti–PD-1 Therapy" Cancer Immunology Research (2018)
  7. "Use of fenofibrate on cardiovascular outcomes in statin users with metabolic syndrome: propensity matched cohort study" BMJ (2019)
Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX