Local anesthetics

25,631views

test

00:00 / 00:00

Local anesthetics

Back to the Basic Sciences

Non-cardiac chest pain and shortness of breath

Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the abdominal viscera: Esophagus and stomach
Anatomy of the abdominal viscera: Innervation of the abdominal viscera
Anatomy of the diaphragm
Anatomy of the inferior mediastinum
Anatomy of the larynx and trachea
Anatomy of the lungs and tracheobronchial tree
Anatomy of the pharynx and esophagus
Anatomy of the pleura
Anatomy of the superior mediastinum
Bones and joints of the thoracic wall
Muscles of the thoracic wall
Vessels and nerves of the thoracic wall
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Thoracic wall
Bronchioles and alveoli histology
Esophagus histology
Trachea and bronchi histology
Alveolar surface tension and surfactant
Anatomic and physiologic dead space
Breathing cycle and regulation
Diffusion-limited and perfusion-limited gas exchange
Gas exchange in the lungs, blood and tissues
Lung volumes and capacities
Pulmonary shunts
Regulation of pulmonary blood flow
Respiratory system anatomy and physiology
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Zones of pulmonary blood flow
Chewing and swallowing
Enteric nervous system
Esophageal motility
Gastric motility
Gastrointestinal system anatomy and physiology
Aortic dissections and aneurysms: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
ECG axis
ECG basics
ECG cardiac hypertrophy and enlargement
ECG cardiac infarction and ischemia
ECG intervals
ECG normal sinus rhythm
ECG QRS transition
ECG rate and rhythm

Trauma

Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Anatomy of the axilla
Anatomy of the pelvic cavity
Anatomy of the urinary organs of the pelvis
Anatomy of the vessels of the posterior abdominal wall
Arteries and veins of the pelvis
Deep structures of the neck: Root of the neck
Fascia, vessels and nerves of the upper limb
Introduction to the cranial nerves
Superficial structures of the neck: Anterior triangle
Superficial structures of the neck: Posterior triangle
Vessels and nerves of the forearm
Vessels and nerves of the gluteal region and posterior thigh
Vessels and nerves of the thoracic wall
Vessels and nerves of the vertebral column
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Axilla
Anatomy clinical correlates: Bones, fascia and muscles of the neck
Anatomy clinical correlates: Cerebral hemispheres
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Eye
Anatomy clinical correlates: Female pelvis and perineum
Anatomy clinical correlates: Heart
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Male pelvis and perineum
Anatomy clinical correlates: Mediastinum
Anatomy clinical correlates: Pleura and lungs
Anatomy clinical correlates: Skull, face and scalp
Anatomy clinical correlates: Spinal cord pathways
Anatomy clinical correlates: Thoracic wall
Anatomy clinical correlates: Vertebral canal
Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck
Anatomy clinical correlates: Viscera of the neck
Anatomy clinical correlates: Wrist and hand
Eye conditions: Inflammation, infections and trauma: Pathology review
Pleural effusion, pneumothorax, hemothorax and atelectasis: Pathology review
Spinal cord disorders: Pathology review
Traumatic brain injury: Pathology review

Communication of bad news

Assessments

Flashcards

0 / 21 complete

USMLE® Step 1 questions

0 / 5 complete

USMLE® Step 2 questions

0 / 6 complete

Flashcards

Local anesthetics

0 of 21 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 5 complete

USMLE® Step 2 style questions USMLE

0 of 6 complete

A 55-year-old man presents for evaluation of a boil on his upper back. The patient initially had a small comeodone that he scratched, and it subsequently progressed to become larger and more painful over the past week. The patient has a history of multiple sclerosis and takes baclofen daily for treatment of muscle spasms. The patient has an allergy to tetracaine, and broke out in hives when having a laceration repaired several years ago. Vital signs are within normal limits. Physical examination demonstrates a 2 cm x 2 cm fluctuant abscess over the thoracic spine. The patient is subsequently injected with bupivacaine subcutaneously, directly over the area of highest fluctuance in preparation for incision and drainage. A stab incision is made over the anesthetized area; however, the patient reports significant pain despite administration of bupivacaine. Which of the following best describes the etiology of the phenomenon described above?  

External References

First Aid

2024

2023

2022

2021

Bupivacaine p. 565

Transcript

Watch video only

Local anesthetics are medications used to reversibly block pain sensation in a specific part of the body in order to perform small surgical procedures.

The common suffix for local anesthetics is -caine, like procaine, tetracaine, lidocaine, Michael Caine - no wait, that’s the actor.

Anyway, so there are two classes of local anesthetics - called esters and amides.

Both classes inhibit conduction of action potentials across nerve fibers by blocking sodium (Na+) channels - and thus the perception of pain by the brain.

Pain is sensed by receptors called free nerve endings which are the 1st order neurons in the pain pathway. These neurons send their axons to synapse with 2nd order neurons in the spinal cord which carries the sensory information to the brain, and you feel pain.

Free nerve endings can be triggered in several ways; by mechanical stimulation, like getting punched; by thermal stimulation like heat and cold; or by chemical stimulation from molecules like bradykinin and histamine.

These noxious stimuli trigger the opening of cation channels on the membrane called transient receptor potential channels. This allows Na+ and other positive ions to flow into the cell. The extra positive charge that flows in makes the cell less negative, - which is called depolarization.

This depolarization causes nearby voltage-gated sodium channels to open up as well, setting off this chain reaction that continues down the entire length of the axon.

Now, voltage-gated Na+ channels are unique because they have inactivation gates on the intracellular side.

At resting membrane potential, the channel is closed. When the membrane depolarizes, the channel opens and sodium ions rush into the cell. A few milliseconds later, the inactivation gate closes and blocks Na+ from entering the cell even though the channel is still open. This ends the depolarization process.

Finally, when the cell repolarizes, the inactivation gate opens, the activation gate closes, and the channel enters the closed state again - ready to start another action potential.

Now, local anesthetics are used to inhibit the conduction of action potentials in free nerve endings. These medications are molecules that have an aromatic part, and an amine chain that are linked by either an ester or an amide bond.

There’s a number of ways to administer local anesthetics; topical anesthesia is applied directly to the skin or mucosa; infiltration where the medication is injected into the tissue; or nerve block - where the medication is injected into the tissue near a major nerve.

These are frequently used for minor procedures like getting your tooth pulled, or getting a polyp removed from inside your nose.

Local anesthetics can also be injected into the epidural space or the subarachnoid space in the spinal cord to numb larger areas.

This is often useful for orthopedic procedures like joint replacement, C-sections, and pain management during child delivery.

Once administered, local anesthetics are rapidly absorbed into the bloodstream. This decreases the effect at the target area and increases the systemic side effects.

To correct this, vasoconstrictors like epinephrine are given to diminish blood flow to the site.

Okay, once the anesthetic reach the neurons, they will go inside the cells. However, if the pH in the surrounding tissue is low, like if there’s hypoxia or an infection, some of the medication will become ionized and won’t be able to cross the cell membrane.

Once inside the cell, the medication binds to voltage-gated Na+ channel on the cytoplasmic surface of the membrane.

Local anesthetics are state dependent, meaning they are more likely to affect neurons that are firing more rapidly. This is because they bind more tightly to inactivated Na+ channels and prolong the inactivated state. This way, the action potential will not be able to travel up the neuron’s axon and we do not register the pain.

Local anesthetic have a larger effect on nerves that are small and myelinated, which is good since nerve fiber carrying the pain sensation are usually small.

At larger doses, they can also block conduction of temperature, then touch, then pressure, and finally there’s loss of motor function.

Local anesthetics can be divided into esters and amides based on their molecular structure.

Esters are made up of an aromatic part and a basic chain linked by an ester bond. This class of medications includes cocaine, benzocaine, procaine, and tetracaine.

Cocaine and benzocaine are surface anesthetics for topical use only since they have serious side effects.

Cocaine is the only local anesthetic that blocks the reuptake of catecholamines, which are neurotransmitters in the sympathetic system in charge of the fight-or-flight response.

This causes catecholamines to build up and leads to vasoconstriction, tachycardia, and arrhythmia. It also blocks the reuptake of dopamine, a neurotransmitter that regulates the reward pathway.

Increase in dopamine causes the euphoric feeling associated with cocaine, and can lead to addiction.

Benzocaine can cause methemoglobinemia where the heme in red blood cells get oxidized from the iron-two-plus (Fe2+) state to the iron-three-plus (Fe3+) state and they lose their ability to transport oxygen. This causes the blood to take on an unhealthy chocolate color and can lead to cyanosis.

Procaine has a short duration of action, but its potential to cause side effects, both in the central nervous system and in cardiovascular system, is really high.

Tetracaine has a long duration of action and is commonly used in spinal and corneal anesthesia.

Now, amide anesthetics are made up of an aromatic part and a basic chain linked by an amide bond.

Sources

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
  4. "Essentials of local anesthetic pharmacology" Anesth Prog (2006)
  5. "Ropivacaine: an introduction to a new local anesthetic" CRNA (1995)
  6. "From Cocaine to Ropivacaine: The History of Local Anesthetic Drugs" Current Topics in Medicinal Chemistry (2001)
  7. "Local anesthetics: review of pharmacological considerations" Anesth Prog (2012)