346,648views
00:00 / 00:00
Genetics
Mendelian genetics and punnett squares
Hardy-Weinberg equilibrium
Inheritance patterns
Independent assortment of genes and linkage
Evolution and natural selection
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Fragile X syndrome
Huntington disease
Myotonic dystrophy
Friedreich ataxia
Turner syndrome
Klinefelter syndrome
Prader-Willi syndrome
Angelman syndrome
Beckwith-Wiedemann syndrome
Cri du chat syndrome
Williams syndrome
Alagille syndrome (NORD)
Achondroplasia
Polycystic kidney disease
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Polycystic kidney disease
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Krabbe disease
Leukodystrophy
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Primary ciliary dyskinesia
Phenylketonuria (NORD)
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Alpha-thalassemia
Beta-thalassemia
Wilson disease
Fragile X syndrome
Alport syndrome
X-linked agammaglobulinemia
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Lesch-Nyhan syndrome
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
Mitochondrial myopathy
Autosomal trisomies: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Miscellaneous genetic disorders: Pathology review
Marfan syndrome
0 / 11 complete
0 / 2 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Marfan syndrome p. 50, 306
Marfan syndrome p. 714
Marfan syndrome as cause p. 306
Marfan syndrome p. 306
Marfan syndrome p. 714
aortic aneurysms p. 728
aortic dissection and p. 309
cardiac defect association p. 306
cataracts p. 554
chromosome association p. 62
elastin and p. 50
heart murmur with p. 298
presentation p. 714
thoracic aortic aneurysms and p. 308
Tanner Marshall, MS
Marfan syndrome is a genetic disorder that results in defective connective tissue, which can affect a person’s skeleton, heart, blood vessels, eyes, and lungs.
Normally, the interstitial space of various body tissues is full of microfibrils - which are strong rope-like structures that provide tissue integrity and form connective tissue.
Each microfibril is made of cellulose as well as glycoproteins including the protein fibrillin. In some structures microfibrils form a scaffold for additional proteins like elastin.
Elastin fibers are highly cross-linked, and that gives them a rubber-band-like quality, which allows tissues to stretch and then spring back to their original shape.
Tissues that have elastin fibers are the arteries, skin, and lungs, and tissues that have microfibrils but no overlying layer of elastin are like tendons and the ciliary zonules that hold the eye lens in place.
These tissues are less stretchable, but still have considerable tensile strength.
In addition to being part of microfibrils, fibrillin also regulates tissue growth.
Fibrillin sequesters or removes transforming growth factor beta, or TGF-β, which stimulates tissue growth, so fibrillin therefore lowers how much TGF-β is available to stimulate growth.
Marfan syndrome is caused by mutations in a gene called FBN1, or fibrillin 1, on chromosome 15.
It’s autosomal dominant, which means that even if there’s a normal copy of the gene, a single mutated copy of the gene – in other words a heterozygous mutation – is sufficient to cause the disease.
The FBN1 gene encodes Fibrillin-1 protein, one of three fibrillin subtypes.
In Marfan syndrome, fibrillin-1 is either less abundant or it is dysfunctional. As a result, there are fewer functioning microfibrils in the extracellular matrix, and that means there’s less tissue integrity and elasticity.
Connective tissue is found throughout the body, so this can affect nearly every body system.
Additionally, TGF-β doesn’t get effectively sequestered, so TGF-β signaling is excessive in these tissues - meaning more growth.
The most obvious physical features of Marfan syndrome involve the skeleton.
The long bones grow excessively, so individuals are tall with long arms and legs – this is called a Marfanoid body habitus.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.