12,776views
00:00 / 00:00
Hematological system
Iron deficiency anemia
Beta-thalassemia
Alpha-thalassemia
Sideroblastic anemia
Anemia of chronic disease
Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Anemia of chronic disease
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Fanconi anemia
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Lead poisoning
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Immune thrombocytopenic purpura
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Leukemoid reaction
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Mastocytosis (NORD)
Multiple myeloma
Monoclonal gammopathy of undetermined significance
Waldenstrom macroglobulinemia
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Microcytic anemia: Pathology review
0 / 8 complete
of complete
Laboratory value | Result |
Hemoglobin (Hb) | 10.8 g/dL |
Hematocrit (Hct) | 32% |
Erythrocyte count | 5.7 million/mm3 |
Hemoglobin A2 (HbA2) | 6.5% |
Fetal hemoglobin (HbF) | 60% |
Hemoglobin A (HbA1) | None |
Hemoglobin S (HbS) | None |
At the family medicine center, there is a 60-year-old Indigenous American named Istu who came to visit the doctor because of his progressive fatigue and difficulty in swallowing. Next to him, there is a mother from Greece with her child, Thalia, who is 10 months old. Little Thalia appeared healthy at birth but in the past 2 months, her mother noticed that her face was often pale, she’s been less active, and there was a mass in her belly.
Both Istu and Thalia are suffering from anemia, which is defined as lower than average levels of hemoglobin, typically below 13.5 g/dL in adult men and below 12.0 g/dL in adult women. For children, this level varies based on the age. Now, anemias can be broadly grouped into 3 categories based on mean corpuscular volume, or MCV, which reflects the volume of a Red blood cell or RBC. So microcytic anemia is where the MCV is lower than 80 fL, normocytic, with an MCV between 80 and 100 fL, and macrocytic, with an MCV larger than 100 fL. Now, let’s focus on the microcytic anemias, and the most common causes are iron deficiency anemia, lead poisoning, sideroblastic anemia, and thalassemias. Although microcytic anemia can also present in anemia of chronic disease, which is caused by Inflammatory conditions like rheumatoid arthritis, and systemic lupus erythematosus or SLE, it’s usually classified as normocytic anemia.
Now iron deficiency anemia, lead poisoning, and sideroblastic anemia are caused by defective heme synthesis, while thalassemias are caused by defective globin chains. Normally, RBCs are loaded with millions of copies of a protein called hemoglobin. Hemoglobin is actually made up of four peptide, or globin, chains, each bound to a heme group. Those 4 heme molecules have, right in the middle, iron, which binds to oxygen and allows it to move in our body.
Okay, so let’s look at iron deficiency anemia which could be caused by decreased intake, decreased absorption, increased demand, or increased loss of iron. For your exams, it’s important to know that the clues to help you identify this disorder are often based on the patient’s history. A high yield fact is that the most common cause of iron deficiency is chronic blood loss. This includes women with heavy menstruation or people with bleeding gastric ulcers, and, most importantly, elderly males with colon cancer that can bleed.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.