Mycobacterium tuberculosis (Tuberculosis)

78,301views

00:00 / 00:00

Mycobacterium tuberculosis (Tuberculosis)

NMBE hematoinmuno

NMBE hematoinmuno

Blood histology
Blood components
Erythropoietin
Blood groups and transfusions
Platelet plug formation (primary hemostasis)
Coagulation (secondary hemostasis)
Role of Vitamin K in coagulation
Clot retraction and fibrinolysis
Iron deficiency anemia
Beta-thalassemia
Alpha-thalassemia
Sideroblastic anemia
Anemia of chronic disease
Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Immune thrombocytopenia
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Multiple myeloma
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Ribonucleotide reductase inhibitors
Topoisomerase inhibitors
Platinum containing medications
Anti-tumor antibiotics
Microtubule inhibitors
DNA alkylating medications
Monoclonal antibodies
Antimetabolites for cancer treatment
Thymus histology
Spleen histology
Lymph node histology
Cytokines
Innate immune system
Complement system
T-cell development
B-cell development
MHC class I and MHC class II molecules
T-cell activation
B-cell activation and differentiation
Antibody classes
Type I hypersensitivity
Type II hypersensitivity
Type III hypersensitivity
Type IV hypersensitivity
Graft-versus-host disease
X-linked agammaglobulinemia
Selective immunoglobulin A deficiency
Common variable immunodeficiency
IgG subclass deficiency
Hyperimmunoglobulin E syndrome
Thymic aplasia
DiGeorge syndrome
Severe combined immunodeficiency
Adenosine deaminase deficiency
Ataxia-telangiectasia
Hyper IgM syndrome
Wiskott-Aldrich syndrome
Leukocyte adhesion deficiency
Chediak-Higashi syndrome
Chronic granulomatous disease
Complement deficiency
Hereditary angioedema
Asplenia
Mycobacterium tuberculosis (Tuberculosis)
Anemia: Clinical
ELISA (Enzyme-linked immunosorbent assay)
HIV and AIDS: Pathology review
HIV (AIDS)
Atopic dermatitis
Papulosquamous and inflammatory skin disorders: Pathology review
Bullous pemphigoid
Pemphigus vulgaris
Stevens-Johnson syndrome
Erythema multiforme
Antiplatelet medications
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review

Assessments

Flashcards

0 / 49 complete

USMLE® Step 1 questions

0 / 9 complete

High Yield Notes

4 pages

Flashcards

Mycobacterium tuberculosis (Tuberculosis)

0 of 49 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 9 complete

A 66-year-old man comes to the emergency department with two weeks of dyspnea, fever and a cough productive of blood-tinged sputum. Past medical history is significant for diabetes mellitus, dyslipidemia, HIV, and Pneumocystis carinii pneumonia. The patient is currently compliant with antiretroviral therapy. The patient’s last CD4 count was 450 cells/microL. Current medications include tenofovir-emtricitabine and dolutegravir, atorvastatin, aspirin, and metformin. The patient is sexually active with men and women and uses condoms consistently. The patient does not use intravenous drugs, alcohol, or tobacco. The patient lives in Mississippi in a retirement home and immigrated from India one year ago. Temperature is 38.11°C (100.0°F), pulse is 100/min, respirations are 20/min, blood pressure is 130/75 mmHg, SpO2 is 94% on room air. The patient is alert and oriented. Oral examination reveals white, mucosal plaques that cannot be scraped off easily. Physical examination reveals scattered rales on pulmonary auscultation. The patient's chest radiograph is depicted below. Which of the following best describes the pathogenesis of this patient’s current infectious process?
 
Radiopedia.org

External References

First Aid

2024

2023

2022

2021

Isoniazid p. 194

Mycobacterium tuberculosis p. , 193

Mycobacterium tuberculosis p. , 138

aerobic organism p. 124

culture requirements for p. 124

osteomyelitis p. 177

therapeutic agents p. 193, 194

Pyrazinamide p. 194

Mycobacterium tuberculosis p. , 193

Rifampin p. 193

Mycobacterium tuberculosis p. , 193

Transcript

Watch video only

Content Reviewers

It’s estimated that about two billion people worldwide are infected with mycobacterium tuberculosis, often just shortened to tuberculosis or simply ‘TB’. Two billion is a ton of people, but even though they’re infected, that doesn’t mean that all those people have symptoms, the vast majority, about 90-95%,  aren’t even aware that they’re infected. And this is because usually the immune system can contain it such that it isn’t able to multiply, and often remains latent, or dormant, as opposed to active, which usually causes symptoms and can be spread to others. If the host’s immune system becomes debilitated at some point down the road, like with AIDS or some other illness, or as a person grows older, it can be allowed to reactivate, or basically wake up and become very serious, especially if it spreads throughout the body.

Mycobacteria are an interesting bunch, they’re slender, rod-shaped, and need oxygen to survive, in other words, they’re “strict aerobes”. They’ve got an unusually waxy cell wall, which is mainly a result of the production of mycolic acid. Because of this waxy cell wall, they’re “acid-fast”, meaning that they can hold on to a dye in spite of being exposed to alcohol, leaving it bright red colored when a Ziehl–Neelsen stain is used.  The wall also makes them incredibly hardy, and allows them to resist weak disinfectants and survive on dry surfaces for months at a time.

Now Mycobacterium tuberculosis is usually transmitted via inhalation, which is how they gain entry into the lungs. Now, we breathe in all sorts of virus and bacteria all the time, but we’ve got defenses that take care of most of them. For one, air that we breathe in is turbulent in the upper airways, and drives most bacteria against mucus which is then cleared pretty quickly. Ultimately, though, TB can avoid the mucus traps and make its way to the deep airways and alveoli where we have macrophages that eat up foreign cells, digest, and destroy them. With TB, they recognize foreign proteins on their cell surface, and phagocytize them, or essentially package them into a space called a phagosome. With most cases, the macrophage then fuses the phagosome with a lysosome, which has hydrolytic enzymes that can pretty much break down any biochemical molecule. TB’s tricky, though, and once inside the macrophage, they produce a protein that inhibits this fusion, which allows the mycobacterium to survive. It doesn’t just survive, though, it proliferates, and creates a localized infection.

At this point somebody has developed primary tuberculosis, which means that they have signs of infection soon after being exposed to TB. Even though it sounds bad, most people at this stage are actually asymptomatic or maybe have a mild flu-like illness. About 3 weeks after initial infection, cell-mediated immunity kicks in, and immune cells surround the site of TB infection, creating a granuloma, essentially an attempt to wall off the bacteria and prevent it from spreading. The tissue inside the middle dies as a result, a process referred to as caseous necrosis, which means “cheese-like” necrosis, since the dead tissue is soft, white, and looks kind of like cheese. This area is known as a “Ghon focus”. TB also gets to hilar lymph nodes, either carried over by immune cells through the lymph or by direct extension of the Ghon focus infection and causes caseation there as well, and together, this caseating tissue and associated lymph node make up the characteristic “Ghon complex”. Ghon complexes are usually subpleural and occur in the lower lobes of the lungs. The tissue that’s encapsulated by the granuloma undergoes fibrosis, and often calcification, producing scar tissue that can be seen on X-ray; this calcified Ghon complex is called a “Ranke complex”. In some cases, although a scar is leftover, the mycobacteria is killed off by the immune system, and that’s the end of that.

In other cases, even though they’re walled off, they remain viable, and are therefore still alive, but they’re just dormant. If and when a person’s immune system becomes compromised, like with AIDS or with aging, the Ghon focus can become reactivated, and the infection can spread to either one or both upper lobes of the lungs. It’s thought that this is because oxygenation is greatest in these areas, and TB being an aerobe, prefers areas of greater oxygenation. Since they were previously exposed, the immune system’s memory T cells quickly release cytokines to try and control the new outbreak, which forms more areas of caseous necrosis. This time, though, it tends to cavitate, or form cavities, which can allow the bacteria to disseminate, or spread through airways and lymphatic channels to other parts of the lungs, which can cause bronchopneumonia; but it can also spread via the vascular system and infect almost every other tissues in the body, called systemic miliary TB.

When TB spreads to other tissues, it causes complications related to the organ affected. Kidneys are commonly affected, resulting in sterile pyuria, or high levels of white blood cells in the urine. It might also spread to the meninges of the brain, causing meningitis; the lumbar vertebrae, causing Pott disease; the adrenal glands, causing Addison’s disease; the liver, causing hepatitis; and the cervical lymph nodes, causing lymphadenitis in the neck, also known as scrofula. 

Summary

Mycobacterium tuberculosis is a species of pathogenic bacteria that is responsible for causing the infectious disease tuberculosis (TB). TB is a contagious disease that primarily affects the lungs but can also affect other parts of the body. It is spread through the air when an infected person coughs, sneezes, or talks. Symptoms of TB include a persistent cough, chest pain, and shortness of breath. If left untreated, TB can be fatal. Treatment for TB typically involves a combination of antibiotics for several months.