00:00 / 00:00
Cardiovascular system
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Myocardial infarction
0 / 26 complete
0 / 7 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
myocardial infarction and p. 311
antiarrhythmics after p. 328
β -blockers for p. 247
complications of p. 316
diabetes mellitus p. 352
diagnosis of p. 313
on ECG p. 312, 313
evolution of p. 311
heart failure caused by p. 318
heparin for p. 443
homocystinuria p. 81
hypertensive emergency and p. 306
shock caused by p. 321
thrombolytics for p. 445
According to the world health organization, cardiovascular disease is the leading cause of death worldwide, as well as in the US. Of those, a large proportion are caused by heart attacks, also known as acute myocardial infarctions, or just myocardial infarctions, sometimes just called MI.
The word infarction means that some area of tissue has died due to a lack of blood flow, and therefore a lack of oxygen. “Myo” refers to the muscle, and “cardial” refers to the heart tissue. So with a heart attack, or MI, you have death of heart muscle cells because of a lack in blood flow, a process called necrosis. Now the heart’s main job is to pump blood to your body’s tissues right? Well, the heart also needs blood, and so it also pumps blood to itself, using the coronary circulation. The coronary circulation is this system of small arteries and veins that help keep the heart cells supplied with fresh oxygen. Heart attacks happen when these small arteries become blocked and stop supplying blood to the heart tissue, and if this happens for long enough, heart tissue dies.
Almost all heart attacks are ultimately a result of endothelial cell dysfunction, which relates to anything that irritates or inflames the slippery inner lining of the artery—the tunica intima. One classic irritant are the toxins found in tobacco which float around in the blood and damage these cells. That damage then becomes a site for atherosclerosis, a type of coronary artery disease where deposits of fat, cholesterol, proteins, calcium, and white blood cells build up and start to block blood flow to the heart tissue. This mound of stuff has two parts to it, the soft cheesy-textured interior and the hard outer shell which is called the fibrous cap. Collectively this whole thing’s ominously called plaque. Usually, though, it takes years for plaque to build up, and this slow blockage only partially blocks the coronary arteries, and so even though less blood makes it to heart tissue, there’s still blood. Heart attacks happen when there’s a sudden complete blockage or occlusion of a coronary artery—so let’s see how that can happen. Since these plaques sit right in the lumen of the blood vessel, they’re constantly being stressed by mechanical forces from blood flow, and interestingly it’s often the smaller plaques with softer caps rather than the larger ones with harder caps that are especially prone to break or get ripped off. Once that happens the inner cheesy filling which remember is this mix of fat, cholesterol, proteins, calcium, and white blood cells, is thrombogenic, and this means that it tends to form clots very quickly. So platelets, or blood-clotting components in the blood, flow by and get excited; and they adhere to the exposed cheesy material. In addition to piling up, the platelets also release chemicals that enhance the clotting process. Now this happens super fast, think about how quickly a small cut stops bleeding, that’s a very similar process—it happens in a matter of minutes, right? And now that coronary artery is fully occluded.
Myocardial infarction (MI), also known as a heart attack, occurs when the blood supply to part of the heart muscle is blocked. This is usually caused by a buildup of fatty deposits in the lining of an artery that supplies blood to the heart, a process called atherosclerosis. Symptoms of MI include crushing chest pain or pressure that might radiate up to the left arm or jaw, sweating, nausea, and dyspnea. Treatment of MI includes re-establishing blood flow using medications, angioplasty, or percutaneous coronary intervention.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.