00:00 / 00:00
Medicine and surgery
Antihistamines for allergies
Glucocorticoids
Coronary artery disease: Clinical (To be retired)
Heart failure: Clinical (To be retired)
Syncope: Clinical (To be retired)
Hypertension: Clinical (To be retired)
Hypercholesterolemia: Clinical (To be retired)
Peripheral vascular disease: Clinical (To be retired)
Leg ulcers: Clinical (To be retired)
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Hypersensitivity skin reactions: Clinical (To be retired)
Eczematous rashes: Clinical (To be retired)
Papulosquamous skin disorders: Clinical (To be retired)
Alopecia: Clinical (To be retired)
Hypopigmentation skin disorders: Clinical (To be retired)
Benign hyperpigmented skin lesions: Clinical (To be retired)
Skin cancer: Clinical (To be retired)
Diabetes mellitus: Clinical (To be retired)
Hyperthyroidism: Clinical (To be retired)
Hypothyroidism and thyroiditis: Clinical (To be retired)
Dizziness and vertigo: Clinical (To be retired)
Hyperthyroidism medications
Hypothyroidism medications
Insulins
Hypoglycemics: Insulin secretagogues
Miscellaneous hypoglycemics
Gastroesophageal reflux disease (GERD): Clinical (To be retired)
Peptic ulcers and stomach cancer: Clinical (To be retired)
Diarrhea: Clinical (To be retired)
Malabsorption: Clinical (To be retired)
Colorectal cancer: Clinical (To be retired)
Diverticular disease: Clinical (To be retired)
Anal conditions: Clinical (To be retired)
Cirrhosis: Clinical (To be retired)
Breast cancer: Clinical (To be retired)
Laxatives and cathartics
Antidiarrheals
Acid reducing medications
Anemia: Clinical (To be retired)
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Antiplatelet medications
Pneumonia: Clinical (To be retired)
Urinary tract infections: Clinical (To be retired)
Skin and soft tissue infections: Clinical (To be retired)
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anti-mite and louse medications
Chronic kidney disease: Clinical (To be retired)
Kidney stones: Clinical (To be retired)
Urinary incontinence: Pathology review
ACE inhibitors, ARBs and direct renin inhibitors
PDE5 inhibitors
Adrenergic antagonists: Alpha blockers
Stroke: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Headaches: Clinical (To be retired)
Migraine medications
Asthma: Clinical (To be retired)
Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)
Lung cancer: Clinical (To be retired)
Antihistamines for allergies
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Joint pain: Clinical (To be retired)
Rheumatoid arthritis: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Wrist and hand
Anatomy clinical correlates: Median, ulnar and radial nerves
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Foot
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Glucocorticoids
Opioid agonists, mixed agonist-antagonists and partial agonists
Antigout medications
Non-biologic disease modifying anti-rheumatic drugs (DMARDs)
Osteoporosis medications
Antonia Syrnioti, MD
Anuj Paul
Jerry Ferro
Cassidy Dermott
Talia Ingram, MSMI, CMI
Disease-modifying anti-rheumatic drugs, or DMARDs for short, are a group of medications primarily used to modify or slow down the progression of rheumatoid arthritis. Now, there are two types of DMARDs, biologic DMARDs, which are developed from microorganisms, animals, or humans, and non-biologic DMARDs, which are chemically synthesized in the laboratory. In this video, we’ll particularly focus on the non-biologic DMARDs.
Alright, first let’s talk about physiology eal quick. During the S phase of the cell cycle, the cell performs DNA replication. DNA is composed of a sequence of deoxyribonucleotides and each deoxyribonucleotide is made out of a phosphate group, a five-carbon sugar like deoxyribose, and a nucleobase, which can be either a pyrimidine like cytosine, or thymidine, or a purine like adenine or guanine. Now, pyrimidine synthesis starts when folic acid, or vitamin B9, from our diet, is converted into dihydrofolate or DHF. DHF then gets converted by an enzyme called dihydrofolate reductase or DHFR into tetrahydrofolate, or THF.
THF acts as a mediator and accepts a methyl group from the amino acid serine, becoming 5,10-methyl-THF. This methyl group is then used by an enzyme called thymidylate synthetase, which transfers it to dUMP or deoxyuridine monophosphate, turning it to dTMP or deoxythymidine monophosphate. dTMP then through a series of reactions eventually turns into thymine. And at that point, we’re all set to make DNA.
At the same time, purine synthesis starts with the amino acids glutamine, aspartate, and glycine, together with bicarbonate and formate, which is the anion derived from formic acid. These undergo a ten-step pathway and the result is inosine monophosphate, or IMP, which is a precursor to adenine and guanine. And at that point, we’re all set to make DNA.
Okay, now, rheumatoid arthritis or RA for short is a chronic, progressive, inflammatory disorder that affects synovial joints and, sometimes, other parts of the body like the skin and the lungs. It is thought to be an autoimmune reaction, however, the exact cause is unknown. Generally speaking, it seems to be associated with environmental risk factors like infections and smoking, and with a genetic predisposition like having the alleles HLA-DR1 and HLA–DR4.
So basically, cells of the immune system, including T-cells, and macrophages, enter the joint space and start releasing inflammatory cytokines, like tumor necrosis factor, or TNF-α, interleukin- 1 or IL-1, and interleukin- 6, or IL-6. These cytokines stimulate synovial cells to proliferate and create a pannus, which is a thick, swollen synovial membrane with granulation or scar tissue, made up of fibroblasts, myofibroblasts, and inflammatory cells. Over time, the cytokines released in the pannus start to break down the articular cartilage, eventually leading to bone erosion.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.