Opioid agonists, mixed agonist-antagonists and partial agonists

00:00 / 00:00

Flashcards

Opioid agonists, mixed agonist-antagonists and partial agonists

de completadas

Preguntas

Preguntas del estilo USMLE Step 1

de completadas

Preguntas del estilo USMLE Step 2

de completadas

A 44-year-old woman presents to the emergency department following a first-time seizure. The patient was recently seen in the emergency department for symptomatic nephrolithiasis and was discharged with pain medications and urology follow-up. Her roommate, who is at the bedside, does not recall which medication she was prescribed. Past medical history includes depression, chronic pain, anxiety, and hypertension. Her current medications include sertraline, venlafaxine, amlodipine, and alprazolam. Temperature is 37.3°C (99.2°F), pulse is 111/min, respirations are 22/min, and blood pressure is 163/105 mmHg. Physical examination reveals a confused postictal individual with diaphoresis and mydriasis. Clonus and hyperreflexia are elicited in the lower extremities bilaterally. Which of the following medications is most likely responsible for this patient’s clinical findings?  

External References

First Aid

2024

2023

2022

2021

Acetylcholine (ACh)

opioid analgesics p. 567

Acute pulmonary edema

opiod analgesics p. 567

Adverse effects/events

opioid analgesics p. 567

Calcium channels

opioid effect on p. 567

Diarrhea

opioids for p. 567

opioid withdrawal p. 588

5-HT

opioid effects p. 567

Glutamate

opioid effects p. 567

Heroin

opioids for withdrawal p. 567

Miosis

opioids p. 568

Naloxone

for opioid toxicity p. 247, 567, 588

Naltrexone

opioid toxicity p. 567, 588

Norepinephrine (NE)

opioid effect on p. 567

Opioids p. 568

Beers criteria p. 246

intoxication and withdrawal p. 588

pentazocine and p. 568

sleep apnea p. 697

toxicity treatment p. 247

Potassium channels

opioid effect p. 567

Pregnancy p. 651

opiate use during p. 633

Pulmonary edema

opioids for p. 567

Respiratory depression

opioids p. 568

Vomiting

with opioid analgesics p. 567

Transcript

Watch video only

Opioid agonists are medications used mainly to control acute or chronic pain in particular situations.

Some of them are also used to treat diarrhea and cough. When treating pain, the goal should be to use short-acting opioids at the lowest effective dose for just a few days, and slowly increase their dose only as needed.

As a class, opioids share one thing in common, they bind to opioid receptors in the brain, spinal cord, and gastrointestinal tract.

Some are endogenous, meaning they are produced naturally by the body, like endorphins, short for endogenous morphine.

But others are exogenous, meaning they come from outside the body, like heroin and morphine, which come from the opium poppy; a flowering plant that oozes a milky white liquid.

To understand how opioids work, let’s zoom into a region of the brain tissue that has opioid receptors.

Normally, in the absence of endorphins, inhibitory neurons secrete a neurotransmitter called gamma-aminobutyric acid, or GABA, that prevents nearby neurons from releasing neurotransmitters like dopamine, serotonin, and norepinephrine.

Now, let’s say someone goes to play a rigorous game of badminton. Exercise releases endorphins which activate the three major opioid receptors located on the inhibitory neurons, called the mu, kappa, and delta receptors.

As endorphins bind to these receptors, they block the inhibitory neuron from releasing GABA, allowing the dopamine, serotonin, and norepinephrine secreting neurons to freely unload their neurotransmitters, which then get picked up by another neuron in the same area.

Norepinephrine and serotonin release takes place in pain processing regions of the brain like the thalamus, brainstem, and spinal cord, resulting in a decreased sensitivity to pain.

When dopamine release takes place in reward pathway regions like the ventral tegmental area, nucleus accumbens, and prefrontal cortex, the result is a calming sensation that feels really good.

Resumen

Opioid full agonists are drugs that bind to and activate opioid receptors in the body. They are used to treat pain and can also produce feelings of euphoria, which has led to their abuse and addiction potential. Examples of opioid agonists include morphine, codeine, and oxycodone.

Mixed agonist-antagonists bind to and activate opioid receptors to a certain extent, but also have the ability to block or inhibit the effects of other opioids. They can also be used to treat pain and may have a lower risk of abuse and addiction compared to full agonists.

Fuentes

  1. "Katzung & Trevor's Pharmacology Examination and Board Review,12th Edition" McGraw-Hill Education / Medical (2018)
  2. "Rang and Dale's Pharmacology" Elsevier (2019)
  3. "Behavioral Effects of Opioid Full and Partial Agonists During Chronic Buprenorphine Treatment" Journal of Pharmacology and Experimental Therapeutics (2019)
  4. "Opioid Use Disorder: Medical Treatment Options" Am Fam Physician (2019)
  5. "Primary care management of opioid use disorders: Abstinence, methadone, or buprenorphine-naloxone?" Can Fam Physician (2017)
  6. "Goodman and Gilman's The Pharmacological Basis of Therapeutics, 13th Edition" McGraw-Hill Education / Medical (2017)
Elsevier

Copyright © 2024 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX