Osteomalacia and rickets

18,738views

test

00:00 / 00:00

Osteomalacia and rickets

my

my

Muscular system anatomy and physiology
Anatomy of the vertebral canal
Slow twitch and fast twitch muscle fibers
Brachial plexus
Sliding filament model of muscle contraction
Skeletal muscle histology
Lower back pain: Clinical
Back pain: Pathology review
Muscles of the back
Mesoderm
Myasthenia gravis
Cholinergic receptors
Adrenergic receptors
Alopecia: Clinical
Atopic dermatitis
Acne vulgaris
Local anesthetics
Muscles of the gluteal region and posterior thigh
Anatomy of the tibiofibular joints
Spinal muscular atrophy
Eczematous rashes: Clinical
Osteomalacia and rickets
Osteoporosis
Anatomy of the popliteal fossa
Paget disease of bone
Development of the axial skeleton
Anatomy of the anterior and medial thigh
Bone tumors
Bone tumors: Pathology review
Bone disorders: Pathology review
Oncogenes and tumor suppressor genes
Pediatric bone tumors: Clinical
Pediatric infectious rashes: Clinical
Anatomy clinical correlates: Bones, joints and muscles of the back
Bones of the vertebral column
Sciatica
Charcot-Marie-Tooth disease
Meniscus tear
Somatosensory receptors
Neuromuscular junction and motor unit
Osteoarthritis
Gout
Clostridium tetani (Tetanus)
Muscle spindles and golgi tendon organs
Vessels and nerves of the gluteal region and posterior thigh
Pediatric orthopedic conditions: Clinical
Achondroplasia
Diagnostic skills
Clinical Skills: Pulses assessment
Clinical Skills: Pulse oximetry
Clinical Skills: Respiratory rate assessment
Clinical Skills: Body Temperature Assessment
Clinical Skills: Obtaining blood pressure assessment
Osteoporosis medications
Osteogenesis imperfecta
Muscles of the forearm
Anatomy of the brachial plexus
Muscle contraction
Hashimoto thyroiditis
Hypothyroidism: Pathology review
Hyperthyroidism: Clinical
Rheumatoid arthritis and osteoarthritis: Pathology review
Joint pain: Clinical
Rheumatoid arthritis
Rheumatoid arthritis: Clinical
Gene regulation
Alpha-thalassemia
Beta-thalassemia
Bone remodeling and repair
Glycogen metabolism
Glycogen storage disease type I
Familial hypercholesterolemia
Hypercholesterolemia: Clinical
Sickle cell disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Intrinsic hemolytic normocytic anemia: Pathology review
Von Willebrand disease
Platelet plug formation (primary hemostasis)
Coagulation (secondary hemostasis)
Factor V Leiden
Platelet disorders: Pathology review
Role of Vitamin K in coagulation
Transcription of DNA
DNA replication
Protein C deficiency
Spina bifida
Chiari malformation
Syringomyelia
Anatomy clinical correlates: Wrist and hand
Joints of the wrist and hand
Skin cancer
Epstein-Barr virus (Infectious mononucleosis)
Human papillomavirus
Human herpesvirus 8 (Kaposi sarcoma)
Anti-tumor antibiotics
Turner syndrome
Hyponatremia
Body fluid compartments
Hydration
Movement of water between body compartments
Dyslipidemias: Pathology review
Introduction to pharmacology
Medication overdoses and toxicities: Pathology review
Vibrio cholerae (Cholera)
Cell signaling pathways
Resting membrane potential
Thyroid hormones
Muscular dystrophy
Integumentary system: Skin lesions
Development of the muscular system
Bones of the upper limb
Bones of the lower limb
Anthelmintic medications
Streptococcus pyogenes (Group A Strep)
Mycobacterium tuberculosis (Tuberculosis)
Fatty acid oxidation
Nephrotic syndromes: Pathology review
Glomerular filtration
Nephritic and nephrotic syndromes: Clinical
Nephritic syndromes: Pathology review
Membranous nephropathy
Membranoproliferative glomerulonephritis
Cardiomyopathies: Clinical
ECG QRS transition

Assessments

Flashcards

0 / 19 complete

USMLE® Step 1 questions

0 / 4 complete

High Yield Notes

16 pages

Flashcards

Osteomalacia and rickets

0 of 19 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 4 complete

A 9-year-old boy is brought to the pediatrician by his parents because of bone pain and an abnormal gait pattern. The patient and his family recently immigrated to the United States from India. Prior to immigrating, the patient’s diet consisted mostly of rice and salted vegetables due to food shortages. Vitals are within normal limits. He is below the 10th percentile for height and weight. Radiographic imaging reveals the following findings:  


Image reproduced from Radiopedia  

Which of the following set of laboratory findings will be most likely present in this patient?  

External References

First Aid

2024

2023

2022

2021

Calcium

in osteomalacia/rickets p. 468

Hypophosphatemic rickets p. 57

Osteomalacia/rickets p. 468

Parathyroid hormone (PTH) p. 334

osteomalacia/rickets p. 468

Rachitic rosary p. 468

Rickets p. 468

Fanconi syndrome p. 725

hypophosphatemic p. 611, 611

inheritance p. 57

lab values in p. 469

vitamin D deficiency p. 68

Vitamin D deficiency p. 348

osteomalacia/rickets p. 468, 468

Transcript

Watch video only

Bone softening caused by a faulty process of bone mineralization manifests as either rickets in children or osteomalacia in adults.

Inadequate bone mineralization could be due to a deficient or impaired metabolism of vitamin D, phosphate or calcium.

But first, a bit about bones. Now, long bones, like the femur, are made up of two epiphyses, which are its ends, and the diaphysis, which is the shaft.

Between each epiphysis and the diaphysis, there’s a region called the metaphysis.

And the metaphysis contains the epiphyseal plate, or the growth plate, which is the part of the bone that grows during childhood.

Once growth stops, the growth plate is replaced by an epiphyseal line, and this is known as epiphyseal closure.

Now, for bones to grow and develop properly, special bone cells, called osteoblasts, are hard at work.

To build bone, osteoblasts secrete osteoid, which is an organic matrix made of type 1 collagen.

These collagen fibers are the framework for the osteoblasts' work.

Osteoblasts then deposit calcium and phosphate crystals into the framework.

This process is called bone mineralization, and it confers strength to the growing bones.

Bone mineralization is dependent on an enzyme called alkaline phosphatase - which increases in response to osteoblast activity.

So, at the end of the day, bones are like a storage warehouse for calcium and phosphate.

Now, the levels of calcium and phosphate in the bone, but also in the blood, are regulated by vitamin D and parathyroid hormone, or PTH.

Vitamin D-wise, two steps are necessary for optimal metabolism: first, there must be enough vitamin D in the body, either from food, or created in the skin in response to sunlight exposure.

Secondly, vitamin D must become metabolically active, and this process also has two steps.

First one happens in the liver, where inactive vitamin D is converted into 25-hydroxy-vitamin D by the enzyme 25-Hydroxylase.

25-hydroxy-vitamin D then travels to the kidneys, where the enzyme 1-alpha-hydroxylase converts it to 1,25 hydroxy-vitamin D, or calcitriol, which is the active form of vitamin D.

Calcitriol increase renal tubular reabsorption of calcium which reduces the loss of calcium in the urine.

Calcitriol also increases the intestinal absorption of calcium and phosphate.

Ok, now let’s have a quick look at parathyroid hormone. Parathyroid hormone is secreted in response to low blood calcium levels, and it stimulates the resorption of calcium and a small amount of phosphate from the bone and into the bloodstream.

Additionally, parathyroid hormone can boost 1-alpha-hydroxylase activity, which forms more active vitamin D, increasing gut absorption of calcium.

Lastly, parathyroid hormone increases calcium reabsorption and reduces the reabsorption of phosphate from the kidneys, so more phosphate is excreted through the urine.

Now, when there's not enough active vitamin D, calcium or phosphate, there's inadequate mineralization.

This means that osteoblasts don’t have enough calcium and phosphate to deposit into the organic matrix.

In children, because the growth plates haven’t closed yet, this leads to softening of the bones, impaired growth of bones, and bone malformations.

Whereas, in adults, where the epiphyseal plates have already closed, it only causes weakening and softening of bones which makes them easier to fracture.

Ok, now vitamin D deficiency is the most common cause of both rickets and osteomalacia.

Summary

Rickets and osteomalacia are conditions characterized by bone softening due to a calcium deficiency or lack of vitamin D. The main difference between the two is the age at which they occur. Osteomalacia affects adults, whereas rickets affects children.

The key symptoms are diffuse bone and joint pain, proximal muscle weakness, bone fragility, and increased risk of fractures with minimal trauma. For rickets, there may also be craniotabes( softening and thinning of skull bones). The treatment typically involves vitamin D supplementation and treating the underlying cause.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "The Developmental Basis of Skeletal Cell Differentiation and the Molecular Basis of Major Skeletal Defects" Biological Reviews (2008)
  6. "Triradiate deformity of the pelvis in Paget's disease of bone." Postgraduate Medical Journal (1980)
  7. "Vitamin D supplementation in pregnancy: a systematic review" Health Technology Assessment (2014)