Osteomalacia and rickets

00:00 / 00:00



Osteomalacia and rickets



Osteomalacia and rickets


0 / 19 complete

USMLE® Step 1 questions

0 / 4 complete

High Yield Notes

16 pages


Osteomalacia and rickets

of complete


USMLE® Step 1 style questions USMLE

of complete

A 9-year-old boy is brought to the pediatrician by his parents because of bone pain and an abnormal gait pattern. The patient and his family recently immigrated to the United States from India. Prior to immigrating, the patient’s diet consisted mostly of rice and salted vegetables due to food shortages. Vitals are within normal limits. He is below the 10th percentile for height and weight. Radiographic imaging reveals the following findings:  

Image reproduced from Radiopedia  

Which of the following set of laboratory findings will be most likely present in this patient?  

External References

First Aid









in osteomalacia/rickets p. 473

Hypophosphatemic rickets p. 57

Osteomalacia/rickets p. 473

Parathyroid hormone (PTH) p. 336

osteomalacia/rickets p. 473

Rachitic rosary p. 473

Rickets p. 473

Fanconi syndrome p. 719

hypophosphatemic p. 617, 617

inheritance p. 57

lab values in p. 474

vitamin D deficiency p. 68

Vitamin D deficiency p. 350

osteomalacia/rickets p. 473, 473


Bone softening caused by a faulty process of bone mineralization manifests as either rickets in children or osteomalacia in adults.

Inadequate bone mineralization could be due to a deficient or impaired metabolism of vitamin D, phosphate or calcium.

But first, a bit about bones. Now, long bones, like the femur, are made up of two epiphyses, which are its ends, and the diaphysis, which is the shaft.

Between each epiphysis and the diaphysis, there’s a region called the metaphysis.

And the metaphysis contains the epiphyseal plate, or the growth plate, which is the part of the bone that grows during childhood.

Once growth stops, the growth plate is replaced by an epiphyseal line, and this is known as epiphyseal closure.

Now, for bones to grow and develop properly, special bone cells, called osteoblasts, are hard at work.

To build bone, osteoblasts secrete osteoid, which is an organic matrix made of type 1 collagen.

These collagen fibers are the framework for the osteoblasts' work.

Osteoblasts then deposit calcium and phosphate crystals into the framework.

This process is called bone mineralization, and it confers strength to the growing bones.

Bone mineralization is dependent on an enzyme called alkaline phosphatase - which increases in response to osteoblast activity.

So, at the end of the day, bones are like a storage warehouse for calcium and phosphate.

Now, the levels of calcium and phosphate in the bone, but also in the blood, are regulated by vitamin D and parathyroid hormone, or PTH.

Vitamin D-wise, two steps are necessary for optimal metabolism: first, there must be enough vitamin D in the body, either from food, or created in the skin in response to sunlight exposure.


Rickets and osteomalacia are conditions characterized by bone softening due to a calcium deficiency or lack of vitamin D. The main difference between the two is the age at which they occur. Osteomalacia affects adults, whereas rickets affects children.

The key symptoms are diffuse bone and joint pain, proximal muscle weakness, bone fragility, and increased risk of fractures with minimal trauma. For rickets, there may also be craniotabes( softening and thinning of skull bones). The treatment typically involves vitamin D supplementation and treating the underlying cause.


  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "The Developmental Basis of Skeletal Cell Differentiation and the Molecular Basis of Major Skeletal Defects" Biological Reviews (2008)
  6. "Triradiate deformity of the pelvis in Paget's disease of bone." Postgraduate Medical Journal (1980)
  7. "Vitamin D supplementation in pregnancy: a systematic review" Health Technology Assessment (2014)

Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.