7,536views
00:00 / 00:00
Medicine and surgery
Antihistamines for allergies
Glucocorticoids
Coronary artery disease: Clinical (To be retired)
Heart failure: Clinical (To be retired)
Syncope: Clinical (To be retired)
Hypertension: Clinical (To be retired)
Hypercholesterolemia: Clinical (To be retired)
Peripheral vascular disease: Clinical (To be retired)
Leg ulcers: Clinical (To be retired)
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Antiplatelet medications
Hypersensitivity skin reactions: Clinical (To be retired)
Eczematous rashes: Clinical (To be retired)
Papulosquamous skin disorders: Clinical (To be retired)
Alopecia: Clinical (To be retired)
Hypopigmentation skin disorders: Clinical (To be retired)
Benign hyperpigmented skin lesions: Clinical (To be retired)
Skin cancer: Clinical (To be retired)
Diabetes mellitus: Clinical (To be retired)
Hyperthyroidism: Clinical (To be retired)
Hypothyroidism and thyroiditis: Clinical (To be retired)
Dizziness and vertigo: Clinical (To be retired)
Hyperthyroidism medications
Hypothyroidism medications
Insulins
Hypoglycemics: Insulin secretagogues
Miscellaneous hypoglycemics
Gastroesophageal reflux disease (GERD): Clinical (To be retired)
Peptic ulcers and stomach cancer: Clinical (To be retired)
Diarrhea: Clinical (To be retired)
Malabsorption: Clinical (To be retired)
Colorectal cancer: Clinical (To be retired)
Diverticular disease: Clinical (To be retired)
Anal conditions: Clinical (To be retired)
Cirrhosis: Clinical (To be retired)
Breast cancer: Clinical (To be retired)
Laxatives and cathartics
Antidiarrheals
Acid reducing medications
Anemia: Clinical (To be retired)
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Antiplatelet medications
Pneumonia: Clinical (To be retired)
Urinary tract infections: Clinical (To be retired)
Skin and soft tissue infections: Clinical (To be retired)
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anti-mite and louse medications
Chronic kidney disease: Clinical (To be retired)
Kidney stones: Clinical (To be retired)
Urinary incontinence: Pathology review
ACE inhibitors, ARBs and direct renin inhibitors
PDE5 inhibitors
Adrenergic antagonists: Alpha blockers
Stroke: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Headaches: Clinical (To be retired)
Migraine medications
Asthma: Clinical (To be retired)
Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)
Lung cancer: Clinical (To be retired)
Antihistamines for allergies
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Joint pain: Clinical (To be retired)
Rheumatoid arthritis: Clinical (To be retired)
Lower back pain: Clinical (To be retired)
Anatomy clinical correlates: Clavicle and shoulder
Anatomy clinical correlates: Arm, elbow and forearm
Anatomy clinical correlates: Wrist and hand
Anatomy clinical correlates: Median, ulnar and radial nerves
Anatomy clinical correlates: Bones, joints and muscles of the back
Anatomy clinical correlates: Hip, gluteal region and thigh
Anatomy clinical correlates: Knee
Anatomy clinical correlates: Leg and ankle
Anatomy clinical correlates: Foot
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Glucocorticoids
Opioid agonists, mixed agonist-antagonists and partial agonists
Antigout medications
Osteoporosis medications
PDE5 inhibitors
0 / 5 complete
of complete
2022
2021
2020
2019
2018
2017
2016
sildenafil p. 711
Phosphodiesterase type 5, or PDE5, inhibitors are a class of medications used to treat erectile dysfunction and pulmonary hypertension.
As their name implies, they inhibit the PDE5 enzyme in endothelial cells, which allows for smooth muscle relaxation and thus, promotes blood vessel dilation.
They include sildenafil, vardenafil, and tadalafil.
Alright, first, let’s focus on the structure of blood vessels.
Blood vessels have three layers, also called “tunics,” or coverings, that surround the vessel lumen, the hollow part of the vessel that contains the blood.
The innermost tunic is the tunica intima, which includes the endothelial cells; the next one is the tunica media, or middle tunic, which is mostly made of smooth muscle cells and sheets of elastin protein; and finally, there’s the tunica externa, or outside tunic, which is made up of loosely woven fibers of collagen.
Moreover, the tunica media can contract, causing vasoconstriction, where the lumen gets a lot smaller; or it can relax, or vasodilate, causing the lumen’s diameter to increase, allowing for more blood flow.
Now, within endothelial cells of the tunica intima, there’s an enzyme called nitric oxide synthase, which uses the amino acid L-arginine and molecular oxygen to synthesize nitric oxide or NO for short.
Once synthesized, nitric oxide diffuses to adjacent smooth muscle cells in the tunica media, where it binds and activates an enzyme called guanylyl cyclase.
This enzyme converts guanosine triphosphate, GTP, into cyclic guanosine monophosphate, cGMP, which is a second messenger that induces relaxation of smooth muscle cells in vessel walls.
Alright, now the cGMP-specific phosphodiesterase type 5, or PDE5, is an enzyme found in various tissues, mainly in the corpus cavernosum of the penis and the retina.
It’s also found in lower concentrations in other tissues including platelets, vascular and visceral smooth muscle, and skeletal muscle.
PDE5 (phosphodiesterase type 5) inhibitors are a class of drugs that are used to treat erectile dysfunction and pulmonary hypertension. These drugs work by inhibiting the activity of the enzyme phosphodiesterase type 5 (PDE5), which is responsible for breaking down cyclic guanosine monophosphate (cGMP) in the body. By inhibiting PDE5, these drugs increase the levels of cGMP, which relaxes the smooth muscle tissue in the blood vessels of the penis and lungs, leading to an increase in blood flow. Examples of PDE5 inhibitors include drugs like sildenafil, vardenafil, and tadalafil.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.