00:00 / 00:00
Cardiovascular system
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Patent ductus arteriosus
0 / 11 complete
0 / 3 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
patent ductus arteriosus p. 305
patent ductus arteriosus p. 305
congenital rubella p. 306
fetal alcohol syndrome p. 306
heart murmur with p. 298
indomethacin for p. 499
mechanism and treatment p. 305
misoprostol for p. 408
neonatal respiratory distress syndrome and p. 685
Patent — not in the sense of a patent for an invention — refers to some opening. A patent ductus arteriosus, or PDA for short, refers to a blood vessel, the ductus arteriosus, which connects the pulmonary artery to the aorta during fetal development. The ductus arteriosus is right on the aortic arch where vessels branch off to the brain and upper extremities. All right, so to help visualize this, let’s look at a super simplified version of the heart to show the relationship between the aorta, branches, pulmonary artery, and ductus arteriosus. We’ll still keep the more anatomical heart for reference. So, the ductus arteriosus usually closes after birth because the walls collapse down; this vessel becomes a ligament, the ligamentum arteriosum. When it stays open after birth, we call it a patent ductus arteriosus because it’s still passing blood through it; in other words, it’s still patent.
Now, during development, the fetus doesn’t use the lungs yet; instead, it relies on oxygenated blood from the placenta, which comes into the right atrium. Most of that blood actually flows through the foramen ovale, an opening between the atria. Blood that doesn’t make it through the foramen ovale is pumped out of the right ventricle into the pulmonary artery, at which point most of it gets sent through the ductus arteriosus to the aorta instead of to the lungs. Remember, the fetus isn’t using the lungs yet.
During fetal development, the ductus arteriosus is kept open by high levels of a vasodilator prostaglandin E2, which is made by the placenta and the ductus arteriosus. At birth, a bunch of things change. First, oxygen levels in the blood go up dramatically and the lungs become the main source of oxygenated blood. Soon after birth, the foramen ovale closes and prostaglandin E2 levels fall, causing the ductus arteriosus to close off. The lungs also start to release a small peptide called bradykinin, which constricts the smooth muscle wall of the ductus arteriosus and sort of helps the process along. Within the first day, the ductus arteriosus usually starts clamping shut; within three weeks, it’s completely closed off and turned into the ligamentum arteriosum. If the ductus arteriosus doesn’t close, then the baby is left with a patent ductus arteriosus. This condition accounts for about 10% of all congenital heart defects, of which the vast majority, about 90%, are isolated heart defects, meaning there aren’t any additional congenital defects. On the other hand, a PDA can be associated with other congenital problems, such as congenital rubella syndrome, which happens when the mother contracts rubella virus during her pregnancy.
Patent ductus arteriosus (PDA) is a congenital heart defect in which the ductus arteriosus, a blood vessel that normally closes after birth, remains open. During fetal development, the ductus arteriosus connects and shunts blood from the pulmonary artery to the aorta, because the fetus doesn't use its lungs yet.
Initially, PDA causes a left-to-right shunt, resulting in pulmonary hypertension. Over time, as the pulmonary artery pressure increases, this is converted into a right-to-left shunt. This switch in the shunt is known as Eisenmenger's syndrome. PDA can be treated with the drug indomethacin, or by surgical ligation.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.