Phosphate, calcium and magnesium homeostasis

19,592views

test

00:00 / 00:00

Phosphate, calcium and magnesium homeostasis

5400

5400

Development of the renal system
Ureter, bladder and urethra histology
Kidney histology
Renal system anatomy and physiology
Body fluid compartments
Hydration
Movement of water between body compartments
Horseshoe kidney
Renal agenesis
Potter sequence
Posterior urethral valves
Multicystic dysplastic kidney
Polycystic kidney disease
Vesicoureteral reflux
Alport syndrome
Urinary incontinence
Urinary incontinence: Pathology review
Neurogenic bladder
Bladder exstrophy
Antidiuretic hormone
Syndrome of inappropriate antidiuretic hormone secretion (SIADH)
Diabetes insipidus and SIADH: Pathology review
Diabetes insipidus
Nephrotic syndromes: Pathology review
Nephritic and nephrotic syndromes: Clinical
Nephritic syndromes: Pathology review
Minimal change disease
Hydronephrosis
Glomerular filtration
Measuring renal plasma flow and renal blood flow
Renal clearance
TF/Px ratio and TF/Pinulin
Regulation of renal blood flow
Sodium homeostasis
Kidney countercurrent multiplication
Urea recycling
Tubular reabsorption and secretion
Tubular reabsorption and secretion of weak acids and bases
Tubular secretion of PAH
Tubular reabsorption of glucose
Distal convoluted tubule
Loop of Henle
Proximal convoluted tubule
Renin-angiotensin-aldosterone system
Free water clearance
Amyloidosis
IgA nephropathy (NORD)
Poststreptococcal glomerulonephritis
Rapidly progressive glomerulonephritis
Lupus nephritis
Potassium homeostasis
Hypophosphatemia
Hyperphosphatemia
Hypermagnesemia
Hypomagnesemia
Hypocalcemia
Hypercalcemia
Hyperkalemia
Hypokalemia
Hyponatremia
Hypernatremia
Phosphate, calcium and magnesium homeostasis
The role of the kidney in acid-base balance
Acid-base disturbances: Pathology review
Physiologic pH and buffers
Renal tubular acidosis
Renal tubular acidosis: Pathology review
Metabolic acidosis
Metabolic and respiratory acidosis: Clinical
Respiratory acidosis
Metabolic alkalosis
Plasma anion gap
Respiratory alkalosis
Metabolic and respiratory alkalosis: Clinical
Acid-base map and compensatory mechanisms
Ornithine transcarbamylase deficiency
Kidney stones: Pathology review
Nitrogen and urea cycle
Goodpasture syndrome
Erythropoietin
Vitamin D
Kidney stones
ACE inhibitors, ARBs and direct renin inhibitors
Kidney stones: Clinical
Hypokalemia: Clinical
Renal tubular defects: Pathology review
Urinary tract infections: Clinical
Urinary tract infections: Pathology review
Lower urinary tract infection
Proteus mirabilis
Staphylococcus saprophyticus
Enterobacter
Klebsiella pneumoniae
Serratia marcescens
Pseudomonas aeruginosa
Renal artery stenosis
Thiazide and thiazide-like diuretics
Carbonic anhydrase inhibitors
Osmotic diuretics
Loop diuretics
Potassium sparing diuretics
Acute kidney injury: Clinical
Renal azotemia
Postrenal azotemia
Prerenal azotemia
Chronic kidney disease
Acute tubular necrosis
Renal papillary necrosis
Medullary cystic kidney disease
Chronic kidney disease: Clinical
Congenital renal disorders: Pathology review
Medullary sponge kidney
Chronic pyelonephritis
Acute pyelonephritis
Neisseria gonorrhoeae
Chlamydia trachomatis
Urethritis
Prostatitis
Schistosomes
Hemolytic-uremic syndrome
Thrombotic thrombocytopenic purpura
Renal cortical necrosis
Renal cell carcinoma
Angiomyolipoma
WAGR syndrome
Nephroblastoma (Wilms tumor)
Non-urothelial bladder cancers
Transitional cell carcinoma
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Renal and urinary tract masses: Pathology review
Transplant rejection
Graft-versus-host disease
Non-corticosteroid immunosuppressants and immunotherapies
Hypertension
BK virus (Hemorrhagic cystitis)

Evaluaciones

Flashcards

0 / 22 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

10 pages

Flashcards

Phosphate, calcium and magnesium homeostasis

0 de 22 completadas

Preguntas

Preguntas del estilo USMLE® Step 1

0 de 1 completadas

The total amount of calcium circulating in the serum is either protein-bound, anion-bound, or ionized calcium. Which of the following changes will be seen in a patient with a serum pH of 7.55?  

Transcripción

Ver video solo

Content Reviewers

Phosphate is a negative ion noted as PO4, while calcium, noted as Ca and magnesium, noted as Mg, are positive ions.

Now, about 85 percent of the phosphate, along with 99 percent of calcium and about 60 percent of magnesium are located in the bone matrix.

Phosphate and calcium combine to form calcium phosphate, which makes up the hard bone matrix of bones and teeth, and magnesium helps strengthen it.

Okay, now, let’s start talking specifics about phosphate. The remaining 15 percent of phosphate is found almost entirely in the intracellular fluid, or ICF, while only less than 0.5 percent is found in the extracellular fluid, or ECF.

Now, most of the ECF is made up of plasma and in the plasma, 90% of phosphate circulates free, while 10 percent is bound to plasma proteins.

Phosphate plasma levels range between 2.5 and 4.5 milligrams per deciliter.

Phosphate is a component of nucleotides that make up the DNA and RNA, high-energy molecules, like adenosine tri-phosphate and metabolic intermediates.

Phosphate also acts as a buffer for hydrogen.

Okay, now, phosphate comes from our diet and the daily recommended phosphate intake is about 1 gram per day and we can get it from chicken, turkey or pork.

Once ingested, phosphate is absorbed in the GI tract into the bloodstream and then goes where it’s needed- such as the bone- and the rest is excreted.

Okay, let’s see how phosphate is handled by the kidneys. See, the kidneys are made up of lots and lots of nephrons, and each nephron is made up of a renal corpuscle and a renal tubule.

The renal corpuscle, in turn, is made up of the glomerulus, which is a tiny clump of capillaries, and Bowman’s capsule surrounding it.

So, blood gets to the glomerulus through the afferent arteriole, which is a branch of the renal artery, and leaves the glomerulus through the efferent arterioles.

These vessels act like a coffee filter, allowing everything but red blood cells and proteins to pass from the bloodstream into Bowman’s capsule - which is connected to the renal tubule. And the resulting fluid is called filtrate.

Now, upon exiting the glomerulus, the efferent arterioles divide into capillaries a second time, forming the peritubular vessels, which wrap around the segments of the renal tubule: the proximal convoluted tubule, the U- shaped loop of Henle, which has a descending and ascending limb, the distal convoluted tubule, and the collecting duct.

As filtrate passes through the renal tubule, ions like phosphate, calcium and magnesium are filtered from the capillaries into the lumen of the tubule, and reabsorbed from the lumen into the capillaries, depending on the amount of sodium in the bloodstream.

The phosphate from the plasma that isn’t bound to proteins, specifically about 90 percent of it will be filtered by the glomerular capillaries.

Next, in the proximal convoluted tubule or in the PCT, 70 percent of the filtered phosphate is reabsorbed. This is done by a sodium-phosphate cotransporter located in the proximal tubule cells.

Okay, now, phosphate actually has a so called transport maximum or T m for short. This means that at some point, the sodium-phosphate cotransporters get saturated with phosphate. When this happens, the T m is reached and the remaining phosphate in the lumen is excreted.

Okay, let’s move on and talk about calcium. The 1 percent of calcium that’s not in the bones is found in the ICF and the ECF - specifically in the plasma.

Plasma calcium concentration is about 5 to 10 milliequivalents per liter and it can be found in three forms: about 40 percent of the plasma calcium is bound to proteins like albumin, 10 percent is bound to anions like phosphate or citrate and the remaining 50 percent is the ionized or free form.

Calcium is essential for muscle contraction, enzyme activity and blood coagulation. It also helps with releasing neurotransmitters from neurons, as well as releasing hormones from the endocrine glands.

Calcium also comes from our dairy products like milk, cheese and yoghurt, and the recommended daily intake is about 1 gram per day.

Once ingested, it’s absorbed into the bloodstream and just like with phosphate, most of it goes to the bone. The rest circulates the bloodstream either freely or bound to plasma proteins or anions such as phosphate or citrate, and some of it is excreted by the kidneys.

So inside the kidneys, unbound plasma calcium is filtered by the glomerular capillaries into the Bowman’s capsule and it enters the renal tubule.

In the PCT, about 67 percent of the filtered calcium is reabsorbed, which is exactly the same percentage as sodium reabsorption in the PCT. This is not a coincidence, as studies suggest that calcium reabsorption may be secondary to sodium and water reabsorption in the PCT - but the exact mechanism is still not clear.

As a result, if sodium reabsorption is inhibited, calcium reabsorption will be inhibited too and when sodium reabsorption is high, like with dehydration, calcium reabsorption is increased as well.

In the TAL, about 25% of the filtered calcium is reabsorbed and it’s also tightly coupled with sodium reabsorption.

In the TAL, there’s the sodium-potassium-chloride cotransporter or NKCC2, which reabsorbs sodium, potassium, and chloride into the bloodstream. As such, they shuttle one sodium into the cell, down its concentration gradient, and that powers the movement of one potassium and two chlorides into the cell as well.

Now, the Na/K ATPase pumps 3 sodium ions into the interstitial fluid in exchange for letting two potassium ions into the cell in order to maintain the low sodium concentration inside the cell.

Finally, both chloride and potassium move from the cell back into the lumen of the TAL, through special channels on the apical side of the cells that simply “leak” these ions passively.

The passive movement of potassium generates an electrochemical gradient- also called a lumen positive potential difference- that increases the reabsorption of calcium and magnesium through a paracellular pathway - meaning, these ions don’t use any channels, but rather they sneak between two epithelial cells and go back in the bloodstream.

Resumen

Phosphate, calcium, and magnesium are essential minerals that play important roles in various bodily functions, including bone health, nerve function, and muscle contractions. The body maintains a delicate balance or "homeostasis" of these minerals through a complex interplay of hormones, enzymes, and other regulatory mechanisms.

Phosphate plays a role in bone and teeth formation, and in the synthesis of DNA and RNA. Calcium is also essential for the formation of bones and teeth, muscle contractions, and nerve function. Magnesium is important for the formation of bones and teeth, and for muscle contractions and nerve function. Imbalances in these minerals can lead to various health problems such as osteoporosis, kidney stones, and muscle weakness or cramps.

Fuentes

  1. "Medical Physiology" Elsevier (2016)
  2. "Physiology" Elsevier (2017)
  3. "Human Anatomy & Physiology" Pearson (2018)
  4. "Principles of Anatomy and Physiology" Wiley (2014)
  5. "The role of phosphate in kidney disease" Nature Reviews Nephrology (2016)
  6. "Update – Kalziumstoffwechsel" DMW - Deutsche Medizinische Wochenschrift (2019)
  7. "Renal control of calcium, phosphate, and magnesium homeostasis" Clin J Am Soc Nephrol (2014)