30,949views
00:00 / 00:00
RENAL
Posterior urethral valves
Hypospadias and epispadias
Vesicoureteral reflux
Bladder exstrophy
Urinary incontinence
Neurogenic bladder
Lower urinary tract infection
Transitional cell carcinoma
Non-urothelial bladder cancers
Congenital renal disorders: Pathology review
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Acid-base disturbances: Pathology review
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Nephrotic syndromes: Pathology review
Nephritic syndromes: Pathology review
Urinary incontinence: Pathology review
Urinary tract infections: Pathology review
Kidney stones: Pathology review
Renal and urinary tract masses: Pathology review
Osmotic diuretics
Carbonic anhydrase inhibitors
Loop diuretics
Thiazide and thiazide-like diuretics
Potassium sparing diuretics
ACE inhibitors, ARBs and direct renin inhibitors
Respiratory acidosis
Metabolic acidosis
Plasma anion gap
Respiratory alkalosis
Metabolic alkalosis
Multicystic dysplastic kidney
Proximal convoluted tubule
Loop of Henle
Distal convoluted tubule
Tubular reabsorption and secretion
Tubular secretion of PAH
Tubular reabsorption of glucose
Urea recycling
Tubular reabsorption and secretion of weak acids and bases
Renin-angiotensin-aldosterone system
Antidiuretic hormone
Kidney countercurrent multiplication
Vitamin D
Erythropoietin
Renal agenesis
Horseshoe kidney
Potter sequence
Hyperphosphatemia
Hypophosphatemia
Hypernatremia
Hyponatremia
Hypermagnesemia
Hypomagnesemia
Hyperkalemia
Hypokalemia
Hypercalcemia
Hypocalcemia
Renal tubular acidosis
Minimal change disease
Diabetic nephropathy
Focal segmental glomerulosclerosis (NORD)
Amyloidosis
Membranous nephropathy
Lupus nephritis
Membranoproliferative glomerulonephritis
Poststreptococcal glomerulonephritis
Rapidly progressive glomerulonephritis
IgA nephropathy (NORD)
Alport syndrome
Kidney stones
Hydronephrosis
Acute pyelonephritis
Chronic pyelonephritis
Prerenal azotemia
Renal azotemia
Acute tubular necrosis
Postrenal azotemia
Renal papillary necrosis
Renal cortical necrosis
Chronic kidney disease
Polycystic kidney disease
Medullary cystic kidney disease
Medullary sponge kidney
Renal artery stenosis
Renal cell carcinoma
Angiomyolipoma
Nephroblastoma (Wilms tumor)
WAGR syndrome
Beckwith-Wiedemann syndrome
Urinary tract infections: Clinical (To be retired)
Hypokalemia: Clinical (To be retired)
Goodpasture syndrome
Syndrome of inappropriate antidiuretic hormone secretion (SIADH)
Diabetes insipidus and SIADH: Pathology review
Plasma anion gap
0 / 5 complete
0 / 2 complete
of complete
of complete
Laboratory value | Result |
Serum | |
Sodium | 130 mEq/L |
Potassium | 6.0 mEq/L |
Chloride | 100 mEq/L |
Bicarbonate | 18 mEq/L |
pH | 7.31 |
Urine | |
pH | 5.0 |
Marisa Pedron
Tanner Marshall, MS
Plasma anion gap is a measurement of the balance between positively charged ions called cations and negatively charged ions called anions, within the plasma.
Its normal range is typically between 3 and 11 mEq/L, while anything below 3 mEq/L is considered abnormally low, and above 11 mEq/L is usually considered abnormally high, and.
Every single moment, trillions of cations and anions are floating around inside our blood vessels. For them to happily and stably coexist, the plasma has to be kept electrically neutral.
That means that the sum of all positive charge from cations has to equal the sum of all negative charge from anions.
The vast majority of cations are sodium Na+ ions, followed by potassium K+ ions, then calcium Ca2+ ions, then magnesium Mg2+ ions, and finally various positively charged proteins.
The majority of anions are chloride Cl− ions, followed by bicarbonate HCO3− ions, then phosphate PO43- ions, then sulfate SO42- ions, and finally some organic acids and negatively charged plasma proteins, like albumin.
So, to prove that there’s electroneutrality, let’s say we try to measure the concentration of the cations and anions in our plasma.
Unfortunately, not all of the ions are easy or convenient to measure. Specifically, among cations, usually just sodium Na+ is measured, which is typically around 137 mEq/L and among anions, chloride Cl− is measured, which is about 104 mEq/L, and bicarbonate HCO3− is measured, which is around 24 mEq/L.
So just counting up these three ions, there’s a difference, or “gap” between the sodium Na+ concentration and the sum of bicarbonate HCO3− and chloride Cl− concentrations in the plasma, which is 137 minus 128 (104 plus 24) or 9 mEq/L.
This is known as the anion gap, or in other words, how many more cations are there than anions.
Now just a few moments ago, we said that cations equal anions, so why does this gap even exist? Well, it’s because sodium Na+ accounts for the vast majority of cations in the plasma, but by measuring only chloride Cl− and bicarbonate HCO3−, we are ignoring a bunch of anions, including the anion component of several organic acids and negatively charged plasma proteins, like albumin.
In other words, this anion gap represents all these unmeasured, ignored negative charges out there, and normally, ranges between 3 and 11 mEq/L.
If the anion gap is high, it’s usually because there’s an unusually high amount of these unmeasured anions.
Calculating the anion gap is a useful diagnostic tool, because it can help identify potential causes of metabolic acidosis.
“Acidosis” refers to a process that lowers blood pH to less than 7.35 and “metabolic” refers to the fact that it’s caused by a decrease in the concentration of bicarbonate HCO3− ions.
The plasma anion gap is the difference between the plasma concentration of Na+ sodium and the sum of plasma concentrations of (Cl �� + HCO3 ��) and represents the unmeasured anions in the plasma. The normal range of plasma anion gap is between 3 �11 mEq/L. It is elevated in organic acid metabolic acidosis, such as lactic acidosis and diabetes ketoacidosis. Its decrease can be seen in cases of metabolic alkalosis, meaning that the body is producing too little acid or eliminating too much acid.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.