Pleural effusion: Clinical (To be retired)

875,915views

00:00 / 00:00

Videos

Notes

Pleural effusion: Clinical (To be retired)

Medical and surgical emergencies

Cardiology, cardiac surgery and vascular surgery

Advanced cardiac life support (ACLS): Clinical (To be retired)

Supraventricular arrhythmias: Pathology review

Ventricular arrhythmias: Pathology review

Heart blocks: Pathology review

Coronary artery disease: Clinical (To be retired)

Heart failure: Clinical (To be retired)

Syncope: Clinical (To be retired)

Pericardial disease: Clinical (To be retired)

Valvular heart disease: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Shock: Clinical (To be retired)

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Cholinomimetics: Direct agonists

Cholinomimetics: Indirect agonists (anticholinesterases)

Muscarinic antagonists

Sympathomimetics: Direct agonists

Sympatholytics: Alpha-2 agonists

Adrenergic antagonists: Presynaptic

Adrenergic antagonists: Alpha blockers

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

Loop diuretics

Thiazide and thiazide-like diuretics

Calcium channel blockers

cGMP mediated smooth muscle vasodilators

Class I antiarrhythmics: Sodium channel blockers

Class II antiarrhythmics: Beta blockers

Class III antiarrhythmics: Potassium channel blockers

Class IV antiarrhythmics: Calcium channel blockers and others

Positive inotropic medications

Antiplatelet medications

Dermatology and plastic surgery

Blistering skin disorders: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Burns: Clinical (To be retired)

Endocrinology and ENT (Otolaryngology)

Diabetes mellitus: Clinical (To be retired)

Hyperthyroidism: Clinical (To be retired)

Hypothyroidism and thyroiditis: Clinical (To be retired)

Parathyroid conditions and calcium imbalance: Clinical (To be retired)

Adrenal insufficiency: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Insulins

Mineralocorticoids and mineralocorticoid antagonists

Glucocorticoids

Gastroenterology and general surgery

Abdominal pain: Clinical (To be retired)

Appendicitis: Clinical (To be retired)

Gastrointestinal bleeding: Clinical (To be retired)

Peptic ulcers and stomach cancer: Clinical (To be retired)

Inflammatory bowel disease: Clinical (To be retired)

Diverticular disease: Clinical (To be retired)

Gallbladder disorders: Clinical (To be retired)

Pancreatitis: Clinical (To be retired)

Cirrhosis: Clinical (To be retired)

Hernias: Clinical (To be retired)

Bowel obstruction: Clinical (To be retired)

Abdominal trauma: Clinical (To be retired)

Laxatives and cathartics

Antidiarrheals

Acid reducing medications

Hematology and oncology

Blood products and transfusion: Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Anticoagulants: Heparin

Anticoagulants: Warfarin

Anticoagulants: Direct factor inhibitors

Antiplatelet medications

Thrombolytics

Infectious diseases

Fever of unknown origin: Clinical (To be retired)

Infective endocarditis: Clinical (To be retired)

Pneumonia: Clinical (To be retired)

Tuberculosis: Pathology review

Diarrhea: Clinical (To be retired)

Urinary tract infections: Clinical (To be retired)

Meningitis, encephalitis and brain abscesses: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Skin and soft tissue infections: Clinical (To be retired)

Protein synthesis inhibitors: Aminoglycosides

Antimetabolites: Sulfonamides and trimethoprim

Antituberculosis medications

Miscellaneous cell wall synthesis inhibitors

Protein synthesis inhibitors: Tetracyclines

Cell wall synthesis inhibitors: Penicillins

Miscellaneous protein synthesis inhibitors

Cell wall synthesis inhibitors: Cephalosporins

DNA synthesis inhibitors: Metronidazole

DNA synthesis inhibitors: Fluoroquinolones

Herpesvirus medications

Azoles

Echinocandins

Miscellaneous antifungal medications

Anthelmintic medications

Antimalarials

Anti-mite and louse medications

Nephrology and urology

Hypernatremia: Clinical (To be retired)

Hyponatremia: Clinical (To be retired)

Hyperkalemia: Clinical (To be retired)

Hypokalemia: Clinical (To be retired)

Metabolic and respiratory acidosis: Clinical (To be retired)

Metabolic and respiratory alkalosis: Clinical (To be retired)

Toxidromes: Clinical (To be retired)

Medication overdoses and toxicities: Pathology review

Environmental and chemical toxicities: Pathology review

Acute kidney injury: Clinical (To be retired)

Kidney stones: Clinical (To be retired)

Adrenergic antagonists: Alpha blockers

Neurology and neurosurgery

Stroke: Clinical (To be retired)

Seizures: Clinical (To be retired)

Headaches: Clinical (To be retired)

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Spinal cord disorders: Pathology review

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Migraine medications

Osmotic diuretics

Antiplatelet medications

Thrombolytics

Opioid agonists, mixed agonist-antagonists and partial agonists

Opioid antagonists

Pulmonology and thoracic surgery

Asthma: Clinical (To be retired)

Chronic obstructive pulmonary disease (COPD): Clinical (To be retired)

Venous thromboembolism: Clinical (To be retired)

Acute respiratory distress syndrome: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Bronchodilators: Beta 2-agonists and muscarinic antagonists

Pulmonary corticosteroids and mast cell inhibitors

Rheumatology and orthopedic surgery

Joint pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Axilla

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Acetaminophen (Paracetamol)

Non-steroidal anti-inflammatory drugs

Glucocorticoids

Opioid agonists, mixed agonist-antagonists and partial agonists

Antigout medications

Assessments

Pleural effusion: Clinical (To be retired)

USMLE® Step 2 questions

0 / 8 complete

Questions

USMLE® Step 2 style questions USMLE

of complete

A 47-year-old female comes to the emergency department with shortness of breath and cough. The patient’s symptoms have gradually worsened over the past several months. She has no prior medical diagnoses, but she does consume alcohol regularly and has a 15-pack-year smoking history. Family history is notable for coronary artery disease, type II diabetes mellitus, and a sister who carries the BRCA gene mutation. Temperature 37.6°C (99.7°F), pulse is 105/min, and blood pressure is 140/67 mmHg. Respiratory rate is 21/min, and oxygen saturation is 90% on room air. Physical examination is notable for absent breath sounds on the right with dullness to percussion. Non-tender lymphadenopathy is noted at the right axilla. Which of the following is the next best step in the management of this patient?

Memory Anchors and Partner Content

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Evan Debevec-McKenney

Our lungs are covered by two layers of pleura, the inner visceral pleura, and the outer parietal pleura.

Sandwiched between these layers is the pleural space, which normally contains about 10 milliliters of fluid and that provides a bit of lubrication, so that the lungs can smoothly expand within the chest cavity without encountering much friction.

Too much fluid in that space results in a pleural effusion, which can actually hinder lung expansion.

Now, pleural effusions can be broadly classified into transudative and exudative effusions.

Transudative effusions are often caused by systemic diseases, and result from either an increase in the intravascular hydrostatic pressure, such as in congestive heart failure, or as a result of a decrease in the intravascular oncotic pressure due to a decrease in serum albumin, like in liver cirrhosis, nephrotic syndrome, or malnutrition.

Exudative effusions, on the other hand, are usually due to local diseases that may cause inflammation, resulting in increased capillary permeability.

These include infections like pneumonia or tuberculosis, primary lung or metastatic malignancy, autoimmune diseases like systemic lupus erythematosus or rheumatoid arthritis, or pancreatitis.

One more specific type of effusion is a chylothorax, and it results from impaired lymphatic drainage of the pleura, which can happen after accidental damage during surgery, trauma, or cancer invasion.

Interestingly, pulmonary embolism can cause both transudative and exudative effusions.

Summary

Pleural effusion refers to the accumulation of fluid in the pleural cavity. This fluid can impede the lungs' movement and make it difficult to breathe. There are various kinds of pleural effusion, depending on the nature of the fluid and what caused its entry into the pleural space. Pleural effusion can be hydrothorax (serous fluid), hemothorax (blood), urinothorax (urine), chylothorax (chyle), or pyothorax (pus).

Transudative pleural effusion contains decreased protein content and is usually due to increased hydrostatic pressure. Exudative pleural effusion contains increased protein content and is commonly due to malignancy, pneumonia, collagen vascular disease, or trauma.

Diagnosis may require thoracentesis which can help alleviate symptoms, a chest X-ray, or a CT scan. Treatment depends on the underlying cause and may involve antibiotics for infection, chemotherapy if the cause was cancer, and managing the heart or renal failure if they are the underlying causes.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX