Pleural effusion

1,097,252views

test

00:00 / 00:00

Pleural effusion

D115

D115

Systemic lupus erythematosus
Turner syndrome
Klinefelter syndrome
Fragile X syndrome
Prader-Willi syndrome
Angelman syndrome
Endocrine system anatomy and physiology
Restrictive lung diseases
Down syndrome (Trisomy 21)
Pyloric stenosis
Innate immune system
Antibody classes
HIV (AIDS)
Myasthenia gravis
Meningitis
Multiple sclerosis
Guillain-Barre syndrome
Delirium
Lewy body dementia
Alzheimer disease
Epilepsy
Normal pressure hydrocephalus
Huntington disease
Parkinson disease
Concussion and traumatic brain injury
Lambert-Eaton myasthenic syndrome
Major depressive disorder
Generalized anxiety disorder
Schizophrenia
Spina bifida
Phenylketonuria (NORD)
Tay-Sachs disease (NORD)
Cerebral palsy
Hyperparathyroidism
Hypoparathyroidism
Diabetes insipidus
Graves disease
Diabetes mellitus
Cushing syndrome
Primary adrenal insufficiency
Breast cancer
Benign prostatic hyperplasia
Ovarian cyst
Pneumonia
Chronic bronchitis
Asthma
Emphysema
Pulmonary embolism
Pneumothorax
Pleural effusion
Bronchiectasis
Acute respiratory distress syndrome
Mycobacterium tuberculosis (Tuberculosis)
Cor pulmonale
Bacterial epiglottitis
Laryngomalacia
Respiratory syncytial virus
Cystic fibrosis
Sudden infant death syndrome
Disseminated intravascular coagulation
Sickle cell disease (NORD)
Chronic leukemia
Acute leukemia
Myocardial infarction
Deep vein thrombosis
Hypoplastic left heart syndrome
Angina pectoris
Aortic dissection
Aortic dissections and aneurysms: Pathology review
Iron deficiency anemia
Aplastic anemia
Autoimmune hemolytic anemia
Polycythemia vera (NORD)
Immune thrombocytopenia
Epstein-Barr virus (Infectious mononucleosis)
Non-Hodgkin lymphoma
Hodgkin lymphoma
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Beta-thalassemia
Alpha-thalassemia
Raynaud phenomenon
Arterial disease
Peripheral artery disease
Coronary artery disease: Pathology review
Pericarditis and pericardial effusion
Rheumatic heart disease
Heart failure
Patent ductus arteriosus
Ventricular septal defect
Pulmonary valve disease
Kawasaki disease
Tetralogy of Fallot
Urinary tract infections: Clinical
Kidney stones
Chronic kidney disease
Nephrotic syndromes: Pathology review
Acute pyelonephritis
Chronic pyelonephritis
Lower urinary tract infection
Neurogenic bladder
Bladder exstrophy
Hypospadias and epispadias
Polycystic kidney disease
Hemolytic-uremic syndrome
Nephroblastoma (Wilms tumor)
Vesicoureteral reflux
Renal failure: Pathology review
Gastrointestinal bleeding: Pathology review
Gastroesophageal reflux disease (GERD)
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Zollinger-Ellison syndrome
Wilson disease
Malabsorption syndromes: Pathology review
Ulcerative colitis
Crohn disease
Irritable bowel syndrome
Diverticulosis and diverticulitis
Appendicitis
Portal hypertension
Intussusception
Celiac disease
Gastric cancer
Acute pancreatitis
Chronic pancreatitis
Chronic cholecystitis
Acute cholecystitis
Gallstones
Jaundice
Hepatitis
Hepatitis A and Hepatitis E virus
Hepatitis B and Hepatitis D virus
Hepatitis C virus
Cirrhosis
Biliary atresia
Hirschsprung disease
Paget disease of bone
Osteoporosis
Osteoarthritis
Atopic dermatitis
Varicella zoster virus
Osteomalacia and rickets
Bone tumors
Rheumatoid arthritis
Ankylosing spondylitis
Gout
Fibromyalgia
Hypothyroidism
Hypomagnesemia
Glycogen storage disorders: Pathology review
Glycogen storage disease type II (NORD)
Myalgias and myositis: Pathology review
Polymyositis
Dermatomyositis
Lordosis, kyphosis, and scoliosis
Osgood-Schlatter disease (traction apophysitis)
Legg-Calve-Perthes disease
Muscular dystrophy
Scleroderma
Psoriasis
Lichen planus
Pemphigus vulgaris
Acne vulgaris
Erythema multiforme
Stevens-Johnson syndrome
Lyme Disease
Herpes simplex virus
Skin cancer
Human herpesvirus 8 (Kaposi sarcoma)
Rubella virus
Measles virus
Burns
Shock
Cri du chat syndrome
Prostate cancer
Post-traumatic stress disorder
Wiskott-Aldrich syndrome
Ataxia-telangiectasia
DiGeorge syndrome
Truncus arteriosus
Membranoproliferative glomerulonephritis
Poststreptococcal glomerulonephritis
Menstrual cycle

Assessments

Flashcards

0 / 8 complete

USMLE® Step 1 questions

0 / 2 complete

High Yield Notes

6 pages

Flashcards

Pleural effusion

0 of 8 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 2 complete

A 60-year-old man comes to the emergency department because of progressive shortness of breath and chest pain for the past three weeks. Medical history includes type II diabetes mellitus, hyperlipidemia, and a myocardial infarction six years ago. Temperature is 37.1°C (98.9°F), pulse is 80/min, blood pressure is 135/87 mmHg, and respirations are 20/min. Physical examination reveals 2+ pitting edema in the bilateral lower extremities. Respiratory examination is notable for dullness to percussion and decreased breath sounds at the bilateral lung bases. Cardiac auscultation reveals a heart sound occurring immediately after the S2 sound. A chest x-ray is obtained and shows blunting of the costophrenic angles bilaterally. The patient’s serum protein level is 7 g/dL, and serum lactate dehydrogenase is 280 U/L. If a thoracentesis were performed, which of the following laboratory findings would most likely be present in this patient’s pleural fluid?  

External References

First Aid

2024

2023

2022

2021

Cirrhosis p. 396

pleural effusion p. 699

Exudate

pleural effusion p. 699

Heart failure p. 316

pleural effusion p. 699

Lymphatic pleural effusion p. 699

Nephrotic syndrome p. 614, 613

pleural effusion p. 699

Pleural effusion p. 300

asbestosis p. NaN

lung cancer p. 701

mesothelioma p. NaN

physical findings p. 300

Transudate

pleural effusion p. 699

Transcript

Watch video only

“Pleural” refers to the space between the chest cavity and the lungs, and “effusion” refers to a collection of fluid, so a pleural effusion is when a disease process causes fluid to start to collect in the pleural space, which can sometimes restrict lung expansion.

The pleural cavity or pleural space lies between the parietal pleura which is stuck to the chest wall and the visceral pleura which is stuck to the lungs.

Because the lungs fit snugly inside the chest cavity, the visceral and parietal pleura lie right next to each other, and the very very thin space between them contains a layer of fluid that acts as lubrication to allow the lungs to slide back and forth as they expand and contract.

This pleural fluid is similar to interstitial fluid and is made slippery by proteins like albumin.

It’s so similar to interstitial fluid because it--essentially--is interstitial fluid.

There is always a tiny bit of plasma that leaks out of capillaries and gets into the interstitial space, and since these capillaries are so close to the edge of the pleural space, that fluid makes its way into that space and collects there.

If there were no way out of the pleural space, then it would fill up with fluid, but fortunately, there are lymphatic vessels in the pleura then drain the fluid away and deliver it back into the circulatory system.

A pleural effusion is when there’s excess fluid in the pleural space either because too much pleural fluid is produced by the body, which can be due to either a transudative or exudative effusion or because the lymphatics can’t effectively drain away the fluid, called a lymphatic effusion.

A transudative pleural effusion occurs when too much fluid starts to leave the capillaries either because of increased hydrostatic pressure or decreased oncotic pressure in the blood vessels.

Hydrostatic pressure is what we normally think of as blood pressure; it is the force that blood exerts on the walls of the blood vessel, and can be thought of as a pushing force.

A common cause of increased hydrostatic pressure in the lung capillaries is heart failure.

That’s because when the heart can’t effectively pump blood out to the body, it backs up into the pulmonary vessels and causes the blood pressure in those vessels to rise. The high pressure forces fluid out of the capillaries and into the pleural space.

Oncotic pressure results from the the inability of solutes like large proteins - albumin for example - to move across through the capillary.

By the process of osmosis - the process, not the company - fluid moves from areas of low solute concentration to high solute concentration.

Fluid therefore flows out of capillaries and leaks into the pleural space when there is decreased oncotic pressure in the blood vessels.

Two causes of low oncotic pressure are cirrhosis, where the liver makes fewer proteins and nephrotic syndrome, where proteins are lost through the urine.

An exudative pleural effusions is due to inflammation of the pulmonary capillaries which makes them much more leaky.

The larger spaces between endothelial cells allows fluid, immune cells and large proteins like lactate dehydrogenase (LDH) --which is found in all cells, to leak out of the capillaries.

The causes can vary - trauma, malignancy, an inflammatory condition like lupus, or an infection like pneumonia.

If the underlying reason is an infection, like a bacterial or mycobacterial infection, then it’s also possible for that infection to spread into the pleural space which is a walled off space - a bit like an enormous abscess.

Just like an abscess, the infected pleural space can develop fibrinous walls and have loculations.

Finally, there can be a lymphatic pleural effusion, called a chylothorax.

Summary

Pleural effusion refers to the accumulation of fluid in the pleural cavity. This fluid can impede the lungs' movement and make it difficult to breathe. There are various kinds of pleural effusion, depending on the nature of the fluid and what caused its entry into the pleural space. Pleural effusion can be hydrothorax (serous fluid), hemothorax (blood), urinothorax (urine), chylothorax (chyle), or pyothorax (pus).

Transudative pleural effusion contains decreased protein content and is usually due to increased hydrostatic pressure. Exudative pleural effusion contains increased protein content and is commonly due to malignancy, pneumonia, collagen vascular disease, or trauma. Diagnosis is usually done with a thoracentesis which can help alleviate symptoms and can be used to identify the underlying cause.