Polycystic kidney disease

42,048views

00:00 / 00:00

Videos

Notes

Polycystic kidney disease

Renal

Renal

Renal system anatomy and physiology

Hydration

Body fluid compartments

Movement of water between body compartments

Renal clearance

Glomerular filtration

TF/Px ratio and TF/Pinulin

Measuring renal plasma flow and renal blood flow

Regulation of renal blood flow

Tubular reabsorption and secretion

Tubular secretion of PAH

Tubular reabsorption of glucose

Urea recycling

Tubular reabsorption and secretion of weak acids and bases

Proximal convoluted tubule

Loop of Henle

Distal convoluted tubule

Renin-angiotensin-aldosterone system

Sodium homeostasis

Potassium homeostasis

Phosphate, calcium and magnesium homeostasis

Osmoregulation

Antidiuretic hormone

Kidney countercurrent multiplication

Free water clearance

Vitamin D

Erythropoietin

Physiologic pH and buffers

Buffering and Henderson-Hasselbalch equation

The role of the kidney in acid-base balance

Acid-base map and compensatory mechanisms

Respiratory acidosis

Metabolic acidosis

Plasma anion gap

Respiratory alkalosis

Metabolic alkalosis

Renal agenesis

Horseshoe kidney

Potter sequence

Hyperphosphatemia

Hypophosphatemia

Hypernatremia

Hyponatremia

Hypermagnesemia

Hypomagnesemia

Hyperkalemia

Hypokalemia

Hypercalcemia

Hypocalcemia

Renal tubular acidosis

Minimal change disease

Diabetic nephropathy

Focal segmental glomerulosclerosis (NORD)

Amyloidosis

Membranous nephropathy

Lupus nephritis

Membranoproliferative glomerulonephritis

Poststreptococcal glomerulonephritis

Rapidly progressive glomerulonephritis

IgA nephropathy (NORD)

Alport syndrome

Kidney stones

Hydronephrosis

Acute pyelonephritis

Chronic pyelonephritis

Prerenal azotemia

Renal azotemia

Acute tubular necrosis

Postrenal azotemia

Renal papillary necrosis

Renal cortical necrosis

Chronic kidney disease

Polycystic kidney disease

Multicystic dysplastic kidney

Medullary cystic kidney disease

Medullary sponge kidney

Renal artery stenosis

Renal cell carcinoma

Angiomyolipoma

Nephroblastoma (Wilms tumor)

WAGR syndrome

Beckwith-Wiedemann syndrome

Posterior urethral valves

Hypospadias and epispadias

Vesicoureteral reflux

Bladder exstrophy

Urinary incontinence

Neurogenic bladder

Lower urinary tract infection

Transitional cell carcinoma

Non-urothelial bladder cancers

Odds ratio

Sensitivity and specificity

Positive and negative predictive value

Hypertension

Osmotic diuretics

Potassium sparing diuretics

Loop diuretics

Thiazide and thiazide-like diuretics

Carbonic anhydrase inhibitors

ACE inhibitors, ARBs and direct renin inhibitors

Non-corticosteroid immunosuppressants and immunotherapies

Transplant rejection

Assessments

Polycystic kidney disease

Flashcards

0 / 14 complete

USMLE® Step 1 questions

0 / 2 complete

High Yield Notes

11 pages

Flashcards

Polycystic kidney disease

of complete

Questions

USMLE® Step 1 style questions USMLE

of complete

A 40-year-old male comes to the office for a follow-up appointment due to bloody urine and flank pain. He generally feels well, and medical history is unremarkable. The patient mentions that his father had high blood pressure and died at the age of 50 from cardiac complications. The patient does not use tobacco, excessive alcohol, or illicit substances. Temperature is 37.0°C (98.6°F), pulse is 80/min, and blood pressure is 147/90 mmHg. A CT of the abdomen is obtained and shown below:  


Retrieved from: Wikimedia Commons 
This patient’s condition follows which of the following inheritance patterns?  

External References

First Aid

2016

PKD genes

polycystic kidney disease and p. 71

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Tanner Marshall, MS

Polycystic kidney disease, or PKD, is a genetic disease in which the kidneys become filled with hundreds of cysts, or fluid-filled sacs, causing them to be larger than normal and to quit functioning over time.

These cysts develop in the outer layer—the cortex, as well as the inner layer—the medulla—of both kidneys.

These cysts, which are lined with renal tubular epithelium, fill up with fluid and get larger and larger over time, making the kidneys much larger than normal.

The blood vessels that feed neighboring healthy nephrons can get compressed by growing cysts, which literally starves them of oxygen.

Poorly perfused kidneys respond by activating the renin-angiotensin-aldosterone system, which facilitates fluid retention and leads to hypertension.

Also, expanding cysts can compress the collecting system, causing urinary stasis, and in some cases this can lead to kidney stones.

Additionally, destruction of the normal renal architecture can cause symptoms like flank pain and hematuria, or blood in the urine.

Over time, as enough nephrons are affected, it leads to renal insufficiency and eventually renal failure.

Now the first type of PKD is autosomal dominant PKD or ADPKD, which used to be called adult PKD, since symptoms usually manifest in adulthood.

The first gene responsible for ADPKD is PKD1, which when mutated causes the more severe and earlier onset variety, and PKD2, which when mutated causes less severe disease and is also later in onset. PKD1 and PKD2 code for the polycystin 1 and polycystin 2 proteins, respectively, which are components of the primary cilium.

Now, the primary cilium is an appendage that sticks out from most cells in the body and receives developmentally important signals.

More specifically, in the nephron, as the urinary filtrate flows by and cause it to bend, polycystin 1 and polycystin 2 respond by allowing calcium influx, which activates pathways in the cell that inhibit cell proliferation.

Summary

Polycystic kidney disease or PKD, is a genetic disorder in which the kidneys become filled with hundreds of cysts, causing them to be larger than normal and to fail over time. PKD presents with high blood pressure, headaches, abdominal pain, blood in the urine, and excessive urination. Other symptoms include pain in the back, and cyst formation (renal and other organs). PKD comes in two varieties: autosomal dominant, which presents in adulthood, and autosomal recessive, which presents in infancy or even before birth. Treatment of PKD typically involves medications to control symptoms, lifestyle changes, and in some cases, surgery.

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX