42,048views
00:00 / 00:00
Genetics
Mendelian genetics and punnett squares
Hardy-Weinberg equilibrium
Inheritance patterns
Independent assortment of genes and linkage
Evolution and natural selection
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Fragile X syndrome
Huntington disease
Myotonic dystrophy
Friedreich ataxia
Turner syndrome
Klinefelter syndrome
Prader-Willi syndrome
Angelman syndrome
Beckwith-Wiedemann syndrome
Cri du chat syndrome
Williams syndrome
Alagille syndrome (NORD)
Achondroplasia
Polycystic kidney disease
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Polycystic kidney disease
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Krabbe disease
Leukodystrophy
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Primary ciliary dyskinesia
Phenylketonuria (NORD)
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Alpha-thalassemia
Beta-thalassemia
Wilson disease
Fragile X syndrome
Alport syndrome
X-linked agammaglobulinemia
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Lesch-Nyhan syndrome
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
Mitochondrial myopathy
Autosomal trisomies: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Miscellaneous genetic disorders: Pathology review
Polycystic kidney disease
0 / 14 complete
0 / 2 complete
of complete
of complete
2016
polycystic kidney disease and p. 71
Tanner Marshall, MS
Polycystic kidney disease, or PKD, is a genetic disease in which the kidneys become filled with hundreds of cysts, or fluid-filled sacs, causing them to be larger than normal and to quit functioning over time.
These cysts develop in the outer layer—the cortex, as well as the inner layer—the medulla—of both kidneys.
These cysts, which are lined with renal tubular epithelium, fill up with fluid and get larger and larger over time, making the kidneys much larger than normal.
The blood vessels that feed neighboring healthy nephrons can get compressed by growing cysts, which literally starves them of oxygen.
Poorly perfused kidneys respond by activating the renin-angiotensin-aldosterone system, which facilitates fluid retention and leads to hypertension.
Also, expanding cysts can compress the collecting system, causing urinary stasis, and in some cases this can lead to kidney stones.
Additionally, destruction of the normal renal architecture can cause symptoms like flank pain and hematuria, or blood in the urine.
Over time, as enough nephrons are affected, it leads to renal insufficiency and eventually renal failure.
Now the first type of PKD is autosomal dominant PKD or ADPKD, which used to be called adult PKD, since symptoms usually manifest in adulthood.
The first gene responsible for ADPKD is PKD1, which when mutated causes the more severe and earlier onset variety, and PKD2, which when mutated causes less severe disease and is also later in onset. PKD1 and PKD2 code for the polycystin 1 and polycystin 2 proteins, respectively, which are components of the primary cilium.
Now, the primary cilium is an appendage that sticks out from most cells in the body and receives developmentally important signals.
More specifically, in the nephron, as the urinary filtrate flows by and cause it to bend, polycystin 1 and polycystin 2 respond by allowing calcium influx, which activates pathways in the cell that inhibit cell proliferation.
Polycystic kidney disease or PKD, is a genetic disorder in which the kidneys become filled with hundreds of cysts, causing them to be larger than normal and to fail over time. PKD presents with high blood pressure, headaches, abdominal pain, blood in the urine, and excessive urination. Other symptoms include pain in the back, and cyst formation (renal and other organs). PKD comes in two varieties: autosomal dominant, which presents in adulthood, and autosomal recessive, which presents in infancy or even before birth. Treatment of PKD typically involves medications to control symptoms, lifestyle changes, and in some cases, surgery.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.