Protein C deficiency

5,444views

test

00:00 / 00:00

Protein C deficiency

NMBE hematoinmuno

NMBE hematoinmuno

Blood histology
Blood components
Erythropoietin
Blood groups and transfusions
Platelet plug formation (primary hemostasis)
Coagulation (secondary hemostasis)
Role of Vitamin K in coagulation
Clot retraction and fibrinolysis
Iron deficiency anemia
Beta-thalassemia
Alpha-thalassemia
Sideroblastic anemia
Anemia of chronic disease
Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Immune thrombocytopenia
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Multiple myeloma
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Coagulation disorders: Pathology review
Platelet disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Thrombosis syndromes (hypercoagulability): Pathology review
Lymphomas: Pathology review
Leukemias: Pathology review
Plasma cell disorders: Pathology review
Myeloproliferative disorders: Pathology review
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Ribonucleotide reductase inhibitors
Topoisomerase inhibitors
Platinum containing medications
Anti-tumor antibiotics
Microtubule inhibitors
DNA alkylating medications
Monoclonal antibodies
Antimetabolites for cancer treatment
Thymus histology
Spleen histology
Lymph node histology
Cytokines
Innate immune system
Complement system
T-cell development
B-cell development
MHC class I and MHC class II molecules
T-cell activation
B-cell activation and differentiation
Antibody classes
Type I hypersensitivity
Type II hypersensitivity
Type III hypersensitivity
Type IV hypersensitivity
Graft-versus-host disease
X-linked agammaglobulinemia
Selective immunoglobulin A deficiency
Common variable immunodeficiency
IgG subclass deficiency
Hyperimmunoglobulin E syndrome
Thymic aplasia
DiGeorge syndrome
Severe combined immunodeficiency
Adenosine deaminase deficiency
Ataxia-telangiectasia
Hyper IgM syndrome
Wiskott-Aldrich syndrome
Leukocyte adhesion deficiency
Chediak-Higashi syndrome
Chronic granulomatous disease
Complement deficiency
Hereditary angioedema
Asplenia
Mycobacterium tuberculosis (Tuberculosis)
Anemia: Clinical
ELISA (Enzyme-linked immunosorbent assay)
HIV and AIDS: Pathology review
HIV (AIDS)
Atopic dermatitis
Papulosquamous and inflammatory skin disorders: Pathology review
Bullous pemphigoid
Pemphigus vulgaris
Stevens-Johnson syndrome
Erythema multiforme
Antiplatelet medications
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review

Assessments

Flashcards

0 / 11 complete

USMLE® Step 1 questions

0 / 2 complete

High Yield Notes

6 pages

Flashcards

Protein C deficiency

0 of 11 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 2 complete

A 52-year-old woman, para 4 gravida 2 aborta 2, comes to the clinic for a follow-up appointment after a hospitalization. Two weeks ago, she had an incident of acute, severe abdominal pain and bloody stools. She was diagnosed with portal vein thrombosis. She denies similar episodes in the past. Medical history is notable for Legg-Calvé-Perthes disease as a child. She does not smoke, drink excessive alcohol, or use illicit drugs. She had 2 spontaneous abortions in the first trimester, following 2 successful pregnancies. Family history is remarkable for DVT in her maternal uncle and colon cancer in her father. The physician suspects an inherited condition. Which of the following will prompt further evaluation in this patient?  

Transcript

Watch video only

Protein C and S are two anticoagulation proteins that inactivate coagulation factors Va and VIIIa in the coagulation cascade. This means, they act like brakes on coagulation, limiting clot formation and preventing clots from growing too big. So, when either of these proteins is deficient, it leads to a hypercoagulable state, meaning a person is at increased risk of developing a clot that could block blood flow. The most common places for such clots to develop are in the deep veins of the legs and in the vessels that carry de-oxygenated blood through the lungs.

Normally, protein C and protein S are 2 of many proteins or enzymes that regulate the complex process called hemostasis. This is where a solid clot forms in the flowing, liquid blood to plug the defect in a damaged blood vessel. It has two steps; Primary hemostasis involves the formation of a platelet plug at the site of injury, and secondary hemostasis involves coagulation, where several clotting factors come into play to form a fibrin mesh over the platelet plug to reinforce it, and form the blood clot. The main role of protein C and protein S is to prevent excess coagulation, or fibrin formation, during secondary hemostasis.

Protein C and S prevent excess coagulation by interacting with several other proteins involved in a complex system of checks and balances. So, it starts with a protein called thrombomodulin, which is on endothelial cells that line our blood vessels, and together with thrombin, they form a complex that also includes protein C and protein S.

When protein S joins this complex, it activates the proteolytic site of protein C, which cleaves and inactivates active factor V, a cofactor for factor X in the common pathway, and factor VIII, a cofactor for factor IX in the intrinsic pathway. The factor V degradation product also binds to this complex and further enhances its ability to cleave more active factor V and active factor VIII. By inhibiting both the intrinsic and common pathway, less fibrin is produced and coagulation slows down dramatically.

So, in people with protein C and S deficiency, the thrombin-thrombomodulin complex can’t cleave and inactivate factors V and VIII. This increases circulating factor V and factor VIII levels, and “tips the scale” toward coagulation, putting them at increased risk for thrombosis, or developing blood clots. This usually occurs in the deep veins of the legs or in the pulmonary arteries that carry deoxygenated blood from the heart to the lungs.

There are two types of familial, or congenital, protein C and S deficiency; both are inherited in an autosomal dominant manner. Type I disease is when there’s not enough protein C or S, so there’s a quantitative defect. Type II disease, however, is a qualitative defect, because enough protein C or S are made, but the proteins don’t function properly. There are also acquired forms of protein C or S deficiency, like impaired production as seen in patients with liver disease or in patients taking warfarin, also called coumadin. Another cause is excessive urinary loss of these proteins which can happen in people with nephrotic syndrome.

Protein C or S deficiency is commonly asymptomatic, but symptoms arise when a venous thromboembolism develops. That’s when a clot forms, usually in the deep veins of the leg, and then parts of the clot can break off and travel to other parts of the body. Symptoms of venous thromboembolism include pain similar to a muscle cramp, and swelling in the affected leg.

Summary

Protein C deficiency is a rare genetic trait that results from a lack of functional protein C. Protein C is a naturally occurring anticoagulant that helps to prevent excessive blood clotting by inhibiting coagulation factors V and VIII. So, its deficiency will predispose people to thrombotic disease and an increased incidence of venous thromboembolism. Furthermore, people with protein C deficiency are at an increased risk of developing skin necrosis while on warfarin. Treatment for protein C deficiency typically involves anticoagulants to prevent the formation of blood clots. In some cases, replacement therapy with protein C concentrates may be used.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  3. "Harrison's Principles of Internal Medicine" McGraw-Hill Medical Publishing (2005)
  4. "Protein C deficiency" Haemophilia (2008)
  5. "Protein C and protein S deficiency - practical diagnostic issues" Adv Clin Exp Med (2013)
  6. "Protein S deficiency: a clinical perspective" Haemophilia (2008)