00:00 / 00:00
Prerequisite basic sciences
Childhood and early-onset psychological disorders: Pathology review
Attributable risk (AR)
Bias in interpreting results of clinical studies
Bias in performing clinical studies
Clinical trials
Confounding
DALY and QALY
Direct standardization
Disease causality
Incidence and prevalence
Indirect standardization
Interaction
Mortality rates and case-fatality
Odds ratio
Positive and negative predictive value
Prevention
Relative and absolute risk
Selection bias
Sensitivity and specificity
Study designs
Test precision and accuracy
Acyanotic congenital heart defects: Pathology review
Adrenal masses: Pathology review
Bacterial and viral skin infections: Pathology review
Bone tumors: Pathology review
Coagulation disorders: Pathology review
Congenital neurological disorders: Pathology review
Cyanotic congenital heart defects: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Headaches: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Leukemias: Pathology review
Lymphomas: Pathology review
Macrocytic anemia: Pathology review
Microcytic anemia: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Nephritic syndromes: Pathology review
Nephrotic syndromes: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Pediatric brain tumors: Pathology review
Pediatric musculoskeletal disorders: Pathology review
Platelet disorders: Pathology review
Renal and urinary tract masses: Pathology review
Seizures: Pathology review
Viral exanthems of childhood: Pathology review
Pharmacodynamics: Agonist, partial agonist and antagonist
Pharmacodynamics: Desensitization and tolerance
Pharmacodynamics: Drug-receptor interactions
Pharmacokinetics: Drug absorption and distribution
Pharmacokinetics: Drug elimination and clearance
Pharmacokinetics: Drug metabolism
Adrenal masses: Pathology review
Cystic fibrosis: Pathology review
Diabetes mellitus: Pathology review
HIV and AIDS: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Leukemias: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Obstructive lung diseases: Pathology review
Papulosquamous and inflammatory skin disorders: Pathology review
Pediatric brain tumors: Pathology review
Renal and urinary tract masses: Pathology review
Seizures: Pathology review
Developmental and learning disorders: Pathology review
Growth hormone and somatostatin
Ectoderm
Endoderm
Human development days 1-4
Human development days 4-7
Human development week 2
Human development week 3
Mesoderm
Cell cycle
DNA damage and repair
DNA mutations
DNA replication
DNA structure
Epigenetics
Gene regulation
Mitosis and meiosis
Nuclear structure
Transcription of DNA
Translation of mRNA
Hardy-Weinberg equilibrium
Independent assortment of genes and linkage
Inheritance patterns
Mendelian genetics and punnett squares
Acyanotic congenital heart defects: Pathology review
Autosomal trisomies: Pathology review
Congenital neurological disorders: Pathology review
Cyanotic congenital heart defects: Pathology review
Cystic fibrosis: Pathology review
Disorders of sex chromosomes: Pathology review
Miscellaneous genetic disorders: Pathology review
Breastfeeding
Baroreceptors
Cardiac preload
Chemoreceptors
Renin-angiotensin-aldosterone system
Adrenal insufficiency: Pathology review
Central nervous system infections: Pathology review
Congenital gastrointestinal disorders: Pathology review
Diabetes mellitus: Pathology review
Electrolyte disturbances: Pathology review
Environmental and chemical toxicities: Pathology review
Gastrointestinal bleeding: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Medication overdoses and toxicities: Pathology review
Obstructive lung diseases: Pathology review
Pediatric brain tumors: Pathology review
Pediatric musculoskeletal disorders: Pathology review
Pneumonia: Pathology review
Psychiatric emergencies: Pathology review
Seizures: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Traumatic brain injury: Pathology review
Ventricular arrhythmias: Pathology review
Androgens and antiandrogens
Estrogens and antiestrogens
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Antihistamines for allergies
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
DNA synthesis inhibitors: Fluoroquinolones
DNA synthesis inhibitors: Metronidazole
Miscellaneous cell wall synthesis inhibitors
Miscellaneous protein synthesis inhibitors
Protein synthesis inhibitors: Aminoglycosides
Protein synthesis inhibitors: Tetracyclines
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Glucocorticoids
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Azoles
Glucocorticoids
Pulmonary corticosteroids and mast cell inhibitors
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Antimetabolites: Sulfonamides and trimethoprim
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Pharmacodynamics: Agonist, partial agonist and antagonist
Pharmacodynamics: Desensitization and tolerance
Pharmacodynamics: Drug-receptor interactions
Pharmacokinetics: Drug absorption and distribution
Pharmacokinetics: Drug elimination and clearance
Pharmacokinetics: Drug metabolism
Cell wall synthesis inhibitors: Cephalosporins
Glucocorticoids
Miscellaneous protein synthesis inhibitors
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Aminoglycosides
0 / 30 complete
of complete
2022
2021
2020
2019
2018
2017
2016
Aminoglycosides are antimicrobial antibiotics that inhibit bacterial ribosomes, which are the organelles that make proteins.
Genes are used to synthesize proteins in two steps: transcription and translation.
During transcription, a specific gene on the DNA is “read,” and a copy is made called a messenger RNA, or mRNA.
Translation is also known as protein synthesis, and it’s when ribosomes use mRNA to assemble proteins from amino acids within the cytoplasm.
Now, prokaryotic cells, like bacteria, have smaller ribosomes than eukaryotic cells, like those found in humans.
Bacterial ribosomes are made up of a 50S subunit and a 30S subunit which combine to form a 70S ribosome.
Eukaryotic ribosomes are made up of a 60S and a 40S subunit that form a 80S ribosome.
Since these proteins are different, we can create medications that selectively interfere with the bacterial ones.
In both eukaryotic and prokaryotic cells, protein synthesis involves initiation, elongation, and termination.
In bacteria, initiation occurs when the 50S and 30S subunits bind to the mRNA sequence to form a ribosome-mRNA complex, also known as initiation complex.
The mRNA serves as a blueprint for the protein that will be synthesized.
It’s made up of three nucleotide long sequences, called codons.
Transport RNA, or tRNA, carrying different amino acids can bind to these codons with their matching anticodons.
The complete ribosome-mRNA complex has 3 sites where tRNA can enter and bind.
These are called the A, or aminoacyl site, the P, or peptidyl site, and the E, or exit site.
Elongation starts when the first tRNA, carrying a formylmethionine amino acid, enters the P site and binds to the start codon.
This causes a conformational change in the ribosome, which unlocks the A site for the next tRNA.
A process called proofreading occurs here where only tRNAs with the matching anticodon can bind to corresponding mRNA codon.
After the next tRNA binds at the A site, the amino acid detaches from the tRNA in the P site, and gets attached to the amino acid in the A site by the enzyme peptidyl transferase.
This step is called transpeptidation because the peptide chain is transferred from the P site tRNA to the A site tRNA.
Now, the A site has the newly formed peptide chain dangling from it, while the P site has an empty tRNA with no amino acids.
In the final stage of elongation, called translocation, the ribosome slides across the mRNA, and the A site sits above a new codon, the tRNA that was in the A site slides over to the P site, and the tRNA in the P site slides over to the E site.
Aminoglycosides are a class of antibiotics that inhibit bacterial protein synthesis by binding to the 30S subunit of their ribosomes. This binding disrupts proofreading in bacterial protein synthesis, leading to the production of non-functional or truncated proteins. Examples of the aminoglycoside family include amikacin, gentamicin, neomycin, streptomycin, and tobramycin. Alone, aminoglycosides are effective against Gram-negative aerobic bacteria, but could also treat Gram-positive bacteria if combined with a cell wall synthesis inhibitor, like a beta-lactam antibiotic, or with vancomycin. Notable adverse drug reactions include nephrotoxicity, ototoxicity, neuromuscular blockade, nausea, and allergic reaction.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.