17,949views
00:00 / 00:00
Cardiovascular system
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Coarctation of the aorta
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Renal artery stenosis
0 / 11 complete
0 / 1 complete
of complete
of complete
2016
With renal artery stenosis, ‘stenosis’ means narrowing, which refers to a progressive narrowing of the renal artery, which carries blood to the kidney. This means that the blood downstream of the narrowed spot that goes to the kidney is at lower pressure, which gets sensed by the kidney.
Since an important role of the kidney is to sense and help the maintain a normal blood pressure, the kidney then tries to raise blood pressure throughout the body.
Inside the kidney, there are millions of nephrons, each of which help to filter the blood and then fine-tune the composition of blood by carefully reabsorbing and secreting electrolytes as fluid passes through various parts of the nephron.
Blood approaches the nephron via the afferent arteriole. You can remember it as ‘A’ for approach, and then forms a tangle of capillaries called the glomerulus, before exiting via the efferent arteriole - “e” for exit. That efferent arteriole goes on to split into another set of capillaries - the vasa recta - which surround the nephron, and then blood leaves via the venule.
So there are two capillary beds per nephron, usually we think of it going arteriole - capillary - venule, but in the nephron it goes arteriole - capillary - arteriole - capillary - and finally venule.
So nephrons have the general shape of the letter “U”, with the beginning and end portions getting pretty close to each other.
The reason that this matters, is that over here, lining the inside of the afferent arteriole are endothelial cells.
Renal artery stenosis is a condition that occurs when the artery that carries blood to the kidney becomes more narrow, which reduces the amount of blood that the kidney receives. This can lead to high blood pressure because the kidney senses the low blood pressure due to its impaired blood supply, and responds by releasing the hormone renin which increases blood pressure - ultimately causing systemic hypertension. Renal artery stenosis also leads to reduced kidney function and other serious health complications such as kidney atrophy. Treatment for renal artery stenosis typically involves medications to control blood pressure, lifestyle changes, and procedures to open the narrowed or blocked arteries.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.