Renal tubular acidosis: Pathology review

166,058views

test

00:00 / 00:00

Renal tubular acidosis: Pathology review

Med int

Med int

Antihistamines for allergies
Glucocorticoids
Non-corticosteroid immunosuppressants and immunotherapies
Advanced cardiac life support (ACLS): Clinical
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Coronary artery disease: Clinical
Heart failure: Clinical
Syncope: Clinical
Pericardial disease: Clinical
Infective endocarditis: Clinical
Valvular heart disease: Clinical
Cardiomyopathies: Clinical
Hypertension: Clinical
Hypercholesterolemia: Clinical
Cholinomimetics: Direct agonists
Cholinomimetics: Indirect agonists (anticholinesterases)
Sympathomimetics: Direct agonists
Muscarinic antagonists
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Loop diuretics
Antiplatelet medications
Adrenal hormone synthesis inhibitors
Mineralocorticoids and mineralocorticoid antagonists
Laxatives and cathartics
Antidiarrheals
Acid reducing medications
Fever of unknown origin: Clinical
Fat-soluble vitamin deficiency and toxicity: Pathology review
Water-soluble vitamin deficiency and toxicity: B1-B7: Pathology review
Zinc deficiency and protein-energy malnutrition: Pathology review
Anemia: Clinical
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Leukemia: Clinical
Lymphoma: Clinical
Thrombocytopenia: Clinical
Bleeding disorders: Clinical
Thrombophilia: Clinical
Myeloproliferative neoplasms: Clinical
Plasma cell disorders: Clinical
Blood products and transfusion: Clinical
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Thrombolytics
Hematopoietic medications
Ribonucleotide reductase inhibitors
Topoisomerase inhibitors
Platinum containing medications
Anti-tumor antibiotics
Microtubule inhibitors
DNA alkylating medications
Monoclonal antibodies
Antimetabolites for cancer treatment
Pneumonia: Clinical
Tuberculosis: Pathology review
Diarrhea: Clinical
Viral hepatitis: Clinical
Urinary tract infections: Clinical
Meningitis, encephalitis and brain abscesses: Clinical
Bites and stings: Clinical
Skin and soft tissue infections: Clinical
HIV and AIDS: Pathology review
Protein synthesis inhibitors: Aminoglycosides
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Cell wall synthesis inhibitors: Cephalosporins
DNA synthesis inhibitors: Metronidazole
DNA synthesis inhibitors: Fluoroquinolones
Integrase and entry inhibitors
Nucleoside reverse transcriptase inhibitors (NRTIs)
Protease inhibitors
Hepatitis medications
Non-nucleoside reverse transcriptase inhibitors (NNRTIs)
Neuraminidase inhibitors
Herpesvirus medications
Azoles
Echinocandins
Miscellaneous antifungal medications
Anthelmintic medications
Antimalarials
Anti-mite and louse medications
Hypernatremia: Clinical
Hyponatremia: Clinical
Hyperkalemia: Clinical
Hypokalemia: Clinical
Metabolic and respiratory acidosis: Clinical
Metabolic and respiratory alkalosis: Clinical
Toxidromes: Clinical
Medication overdoses and toxicities: Pathology review
Environmental and chemical toxicities: Pathology review
Acute kidney injury: Clinical
Chronic kidney disease: Clinical
Nephritic and nephrotic syndromes: Clinical
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Osmotic diuretics
Carbonic anhydrase inhibitors
Potassium sparing diuretics
Asthma: Clinical
Chronic obstructive pulmonary disease (COPD): Clinical
Cystic fibrosis: Clinical
Diffuse parenchymal lung disease: Clinical
Venous thromboembolism: Clinical
Acute respiratory distress syndrome: Clinical
Pleural effusion: Clinical
Pneumothorax: Clinical
Lung cancer: Clinical
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Joint pain: Clinical
Rheumatoid arthritis: Clinical
Seronegative arthritis: Clinical
Systemic lupus erythematosus (SLE): Clinical
Sjogren syndrome: Clinical
Inflammatory myopathies: Clinical
Vasculitis: Clinical
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Opioid agonists, mixed agonist-antagonists and partial agonists
Antigout medications
Osteoporosis medications
Adrenal insufficiency: Clinical

Assessments

USMLE® Step 1 questions

0 / 3 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 3 complete

A 76-year-old woman presents to the emergency department with fatigue, decreased appetite, and muscle weakness. Past medical history includes chronic migraines, hypertension, gastroesophageal reflux, and a recent episode of podagra. Current medications include topiramate, lisinopril, acetazolamide, omeprazole, and probenecid. Temperature is 37.0°C (98.6°F), pulse is 104/min, respirations are 24/min, and blood pressure is 96/66 mmHg. Arterial blood gas and laboratory testing are obtained, and the results are shown below.



Which of the following medications most likely contributed to this patient’s disease?

Transcript

Watch video only

In the Emergency Department, two people came in with rapid, shallow breathing and tachycardia. The first one is 45 year old Olga who also has systemic lupus erythematosus and the second one is 39 year old Fred. An arterial blood gas was taken, along with electrolytes. Results showed that Olga had low pH, low bicarbonate and pCO2 levels and her potassium level was also low. Fred also had low pH, low bicarbonate and pCO2 levels, but his potassium level was high. Based on the ABG results, the diagnosis of normal anion gap metabolic acidosis was made. In order to identify the cause of their normal gap metabolic acidosis, more investigations were done and the urine anion gap showed that both individuals had a low urinary anion gap, which suggests that the cause was renal.

Okay, now, a normal anion gap metabolic acidosis can have renal causes. Like when a lot of bicarbonate is lost through the urinary tract- which happens in type II renal tubular acidosis. A normal anion gap metabolic acidosis can also happen when too many hydrogen ions are retained, like in type I and type IV renal tubular acidosis. Now, there’s also a type III renal tubular acidosis, where both the proximal and distal tubules are affected. This is a pretty rare situation and the causes are not well understood, so it’s unlikely to be tested.

Okay, now, let’s review the physiology of the tubules. The proximal tubule is affected in RTA type II. It’s lined by brush border cells which have two surfaces: One is the apical surface that faces the tubular lumen and is lined with microvilli, and the other is the basolateral surface, which faces the peritubular capillaries. Now, a lot of bicarbonate is reabsorbed here. When bicarbonate approaches the apical surface it binds to hydrogen to form carbonic acid, which will be split into water and carbon dioxide by carbonic anhydrase. The water and carbon dioxide diffuse into the cells where carbonic anhydrase facilitates the reverse reaction and combines them to form carbonic acid, which dissociates into bicarbonate and hydrogen. Then bicarbonate will get into the blood with the help of a sodium bicarbonate cotransporter on the basolateral surface. Now, the proximal tubule is also responsible for reabsorbing glucose, as well as amino acids, sodium, chloride, potassium, phosphate, water and uric acid.

Okay, so now let’s look at the distal tubule and collecting duct which are affected in type I and type IV RTA. First, they are lined with alpha-intercalated cells which also move bicarbonate and hydrogen from the tubule into the cell with the help of carbonic anhydrase. The alpha intercalated cells also secrete hydrogen across the apical surface and into the tubule with the help of a hydrogen ATPase and a potassium hydrogen ATPase. Once in the lumen, hydrogen binds to phosphate or ammonia to form relatively weak acids like dihydrogen phosphate or ammonium, which then get peed out in the urine. This allows protons to get removed without making the urine too acidic and damaging the cells lining the tubules and the rest of the urinary tract.

The other group of cells in these regions are the principal cells.These cells have a potassium channel that allows potassium into the lumen, and an epithelial sodium channel that allows sodium into the cell. The flow of positively charged sodium ions into cell helps drive the positively charged potassium ions out of the cell against their concentration gradient. There’s also a Na/K ATPase pump on the basolateral surface that again moves 2 potassium ions in for every 3 sodium ions out. All three of these channels are stimulated by aldosterone, and the combined effect is resorption of sodium and loss of potassium.

Summary

Renal tubular acidosis is a medical condition in which the kidney is unable to secrete acids or reabsorb bicarbonate from the body. When blood is filtered by the kidney, the filtrate passes through the tubules of the nephron, allowing for the exchange of salts, acid equivalents, and other solutes before it drains into the bladder as urine. The metabolic acidosis that results from renal tubular acidosis may be caused either by failure to recover sufficient bicarbonate ions from the filtrate in the proximal tubule or by insufficient secretion of hydrogen ions into the distal tubule. If left untreated, acidemia can cause peripheral vasodilation and shock. Treatment may include alkali supplements like potassium citrate or sodium bicarbonate to neutralize the acid in the blood.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "First Aid for the USMLE Step 1 2018, 28th Edition" McGraw-Hill Education / Medical (2017)
  4. "Nephrolithiasis in Renal Tubular Acidosis" Journal of Urology (1989)
  5. "Pathophysiology of Renal Tubular Acidosis: Core Curriculum 2016" American Journal of Kidney Diseases (2016)
  6. "Nephrolithiasis related to inborn metabolic diseases" Pediatric Nephrology (2009)
  7. "Renal Tubular Acidosis" Pediatric Clinics of North America (2019)
  8. "On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA)" Journal of Clinical Investigation (1971)