Respiratory distress syndrome: Pathology review

13,996views

test

00:00 / 00:00

Respiratory distress syndrome: Pathology review

Step 1

Step 1

Tuberculosis: Pathology review
Obstructive lung diseases: Pathology review
Restrictive lung diseases: Pathology review
Apnea, hypoventilation and pulmonary hypertension: Pathology review
Lung cancer and mesothelioma: Pathology review
Deep vein thrombosis and pulmonary embolism: Pathology review
Pneumonia: Pathology review
Respiratory distress syndrome: Pathology review
Cystic fibrosis: Pathology review
Disorders of sex chromosomes: Pathology review
Prostate disorders and cancer: Pathology review
Testicular tumors: Pathology review
Uterine disorders: Pathology review
Ovarian cysts and tumors: Pathology review
Cervical cancer: Pathology review
Benign breast conditions: Pathology review
Complications during pregnancy: Pathology review
Congenital TORCH infections: Pathology review
Breast cancer: Pathology review
Vaginal and vulvar disorders: Pathology review
Androgens and antiandrogens
Adrenergic antagonists: Alpha blockers
PDE5 inhibitors
Estrogens and antiestrogens
Uterine stimulants and relaxants
Aromatase inhibitors
Progestins and antiprogestins
Congenital renal disorders: Pathology review
Renal tubular defects: Pathology review
Renal tubular acidosis: Pathology review
Acid-base disturbances: Pathology review
Electrolyte disturbances: Pathology review
Kidney stones: Pathology review
Renal and urinary tract masses: Pathology review
Osmotic diuretics
Loop diuretics
Potassium sparing diuretics
Carbonic anhydrase inhibitors
Thiazide and thiazide-like diuretics
ACE inhibitors, ARBs and direct renin inhibitors
Congenital neurological disorders: Pathology review
Headaches: Pathology review
Seizures: Pathology review
Cerebral vascular disease: Pathology review
Traumatic brain injury: Pathology review
Spinal cord disorders: Pathology review
Dementia: Pathology review
Central nervous system infections: Pathology review
Movement disorders: Pathology review
Demyelinating disorders: Pathology review
Adult brain tumors: Pathology review
Pediatric brain tumors: Pathology review
Neurocutaneous disorders: Pathology review
General anesthetics
Local anesthetics
Neuromuscular blockers
Back pain: Pathology review
Rheumatoid arthritis and osteoarthritis: Pathology review
Gout and pseudogout: Pathology review
Seronegative and septic arthritis: Pathology review
Systemic lupus erythematosus (SLE): Pathology review
Bone disorders: Pathology review
Bone tumors: Pathology review
Myalgias and myositis: Pathology review
Neuromuscular junction disorders: Pathology review
Pigmentation skin disorders: Pathology review
Acneiform skin disorders: Pathology review
Vesiculobullous and desquamating skin disorders: Pathology review
Papulosquamous and inflammatory skin disorders: Pathology review
Skin cancer: Pathology review
Immunodeficiencies: T-cell and B-cell disorders: Pathology review
Immunodeficiencies: Phagocyte and complement dysfunction: Pathology review
Immunodeficiencies: Combined T-cell and B-cell disorders: Pathology review
Microcytic anemia: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Macrocytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Leukemias: Pathology review
Myeloproliferative disorders: Pathology review
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Antiplatelet medications
Congenital gastrointestinal disorders: Pathology review
Esophageal disorders: Pathology review
Inflammatory bowel disease: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Malabsorption syndromes: Pathology review
Diverticular disease: Pathology review
Gastrointestinal bleeding: Pathology review
Appendicitis: Pathology review
Colorectal polyps and cancer: Pathology review
Pancreatitis: Pathology review
Jaundice: Pathology review
Viral hepatitis: Pathology review
Cirrhosis: Pathology review
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Eye conditions: Retinal disorders: Pathology review
Vertigo: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Adrenal insufficiency: Pathology review
Adrenal masses: Pathology review
Hypothyroidism: Pathology review
Hyperthyroidism: Pathology review
Thyroid nodules and thyroid cancer: Pathology review
Parathyroid disorders and calcium imbalance: Pathology review
Cushing syndrome and Cushing disease: Pathology review
Diabetes mellitus: Pathology review
Pituitary tumors: Pathology review
Hypopituitarism: Pathology review
Multiple endocrine neoplasia: Pathology review
Diabetes insipidus and SIADH: Pathology review
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Shock: Pathology review
Hypertension: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Autosomal trisomies: Pathology review
Miscellaneous genetic disorders: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Purine and pyrimidine synthesis and metabolism disorders: Pathology review
Disorders of carbohydrate metabolism: Pathology review
Disorders of fatty acid metabolism: Pathology review
Glycogen storage disorders: Pathology review
Dyslipidemias: Pathology review
Lysosomal storage disorders: Pathology review
Fat-soluble vitamin deficiency and toxicity: Pathology review

Assessments

USMLE® Step 1 questions

0 / 8 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 8 complete

A 1-day-old boy is brought to the intensive care unit from the nursery due to increased work of breathing. The patient was born at 31 weeks to a mother with a history of multiple preterm deliveries, polysubstance abuse and HIV. His temperature is 38°C (100.4°F), pulse is 215/min, respirations are 76/min, blood pressure is 60/41 mmHg, and oxygen saturation is 85% on room air. Physical exam shows tachypnea, nasal flaring, and subcostal retractions. Administration of supplemental oxygen and positive pressure ventilation improve the patient's oxygen saturation to 95%. Blood glucose is 95 mg/dL. Chest x-ray and laboratory results are shown below:  

 
Reproduced from: Wikipedia
 
Laboratory value  Result 
Blood Gases, Serum 
pH  7.23 
 PCO2  55 mmHg 
 PO2  30 mmHg 
Which of the following best describes the etiology of this infant’s disease process?

Transcript

Watch video only

Two people are admitted to the emergency department.

Mike, a 55-year-old man, presents with shortness of breath, high fever, and cough.

A chest x-ray was ordered and it showed a right lower lobe infiltrate, which is suggestive of pneumonia.

He was then started on IV antibiotics but the following day Mike became hypoxic and hypotensive.

Because his hypotension didn’t improve despite intubation, IV fluids, and vasopressors, he is diagnosed with septic shock.

Next, a repeat x-ray detected newly-developed bilateral alveolar opacities, heart echography ruled out heart failure, and arterial blood gas analysis revealed a PF ratio of 109 milligrams Mercury.

Then there was Dona, an infant delivered by cesarean section at 36 weeks’ gestational age, with an Apgar score of 9 at birth.

A few hours after delivery, she develops tachypnea, chest wall retractions with nasal flaring, and tachycardia.

Aside from increased work of breathing, her physical examination findings are normal.

A chest x-ray was ordered and it showed diffuse reticulogranular ground glass appearance with air bronchograms.

Now, both people are in respiratory distress.

But first, a bit of physiology.

Normally, when you breathe in, the air reaches the alveoli, which are made up of two types of pneumocytes.

First, type I pneumocytes are thin, and have a large surface area that that facilitate gas exchange.

More important for the exams are the type II pneumocytes, which are smaller, thicker and have the ability to proliferate in response to lung injury.

They are in charge of making a fluid called surfactant which contains various phospholipids.

This lets it act like droplets of oil that coats the inside of the alveoli, decreasing surface tension, so if it’s missing, the alveoli will collapse.

These cells also act like stem cells, meaning they can give rise to type I cells and type II pneumocytes.

Ok so acute respiratory distress syndrome, or ARDS, is characterized by rapid onset of widespread inflammation in the lungs which can lead to respiratory failure.

ARDS is not a primary disease, as it is usually triggered by conditions like sepsis, aspiration, trauma, and pancreatitis.

Now ARDS starts when these conditions cause alveolar damage, and a high yield fact is that the injury triggers the pneumocytes to secrete inflammatory cytokines like TNF-alpha and interleukin 1.

This subsequently leads to neutrophil recruitment, and they will release toxic mediators, like reactive oxygen species and proteases, which will damage the lungs even more.

You’ll need to know that the main site of injury is the alveolar-capillary membrane, which becomes more permeable, causing fluid to move into the alveoli resulting in pulmonary edema.

This fluid can impair gas exchange, leading to hypoxemia.

Furthermore, the edema can also wash away the surfactant coating the alveoli to the point where it can’t reduce surface tension anymore, and as a result, the alveoli collapse.

And finally, dead cells and protein-rich fluid start to pile up in the alveolar space and, over time, it forms these waxy hyaline membranes which look like a layer of glassy material.

Individuals with ARDS present with serious symptoms and signs that require urgent investigation.

The inflammation process and impaired gas exchange lead to fever, shortness of breath, tachypnea, chest pain, hypotension, hypoxia, and cyanosis.

More often than not, ARDS will lead to shock due to hypotension.

The excess fluid in the lungs can cause a crackling sound called rales during auscultation, which is the sound of collapsed alveoli popping open with inspiration.

Keep in mind additional symptoms might provide clues to the underlying cause.

For example, epigastric abdominal pain radiating to the back along with a history of gallstones indicate acute pancreatitis.

Diagnosis of ARDS is typically made when the individual presents all of the next four criteria, which you should definitely remember for your exams.

First, the symptoms have to be “acute” meaning an onset of one week or less.

Second, and particularly high yield, a chest X-Ray or CT scan shows opacities or “white out” in both lungs, which is due to pulmonary edema.

The third is what’s called the PF ratio. It’s the partial pressure of oxygen in the arterial blood divided by the percent of oxygen in the inspired air, also called the fraction of inspired oxygen.

In ARDS, gas exchange is defective so the PF ratio is below 300 mmHg, and the lower this ratio gets, the more severe the condition.

Fourth, the respiratory distress must not be due to cardiac causes, like heart failure.

Often this is assessed by using an echocardiogram to look for evidence of heart failure, like an ejection fraction below 55% in systolic heart failure, and abnormal relaxation of the myocardium in diastolic heart failure.

Another clue is the pulmonary capillary wedge pressure, which is measured by inserting a catheter into a small pulmonary arterial branch.

In heart failure, this is elevated because more blood remains in the left side of the heart and it prevents pulmonary venous return.

The blood backs up into the pulmonary vessels, and the increase in pressure pushes fluid into the interstitium of the lungs, resulting in edema.

In ARDS, the pressure is normal since the edema is caused by leaky capillaries instead of increased pressure.

Treatment of ARDS ultimately comes down to treating the condition that triggered it.

However, the most important initial step is supportive care, like supplemental oxygen or mechanical ventilation.

A high yield fact to remember is that it’s vital to maintain positive end-expiratory pressure, which is where the pressure in the lungs is kept slightly above atmospheric pressure, even after exhalation, because this prevents the alveoli from collapsing.

It’s also good to have low tidal volumes to prevent over-inflation of the damaged alveoli.

Another important thing to watch out for is positive pressure ventilation can cause compression of pulmonary vessels which leads to pulmonary hypertension decreased pulmonary venous return.

This will reduce cardiac output and hypotension might worsen.

Summary

Respiratory distress syndrome (RDS) is a respiratory condition in which the alveoli collapse due to the deficiency of the surface-active substance called surfactant. Collapsed alveoli make it difficult to breathe and get enough oxygen. Acute respiratory distress syndrome happens when inflammation causes diffuse alveolar injury and pulmonary edema. This edema can wash away the surfactant coating the alveoli to the point where it causes the alveoli to collapse. There is also neonatal respiratory distress syndrome, which mostly affects premature infants, whose lungs are not fully developed and lack enough surfactant.

Symptoms of respiratory distress syndrome include rapid breathing, grunting, and flaring of the nostrils while breathing, as well as cyanosis (bluish color of the skin) and difficulty feeding. All forms of respiratory distress can lead to respiratory failure and death if not treated promptly. Treatment includes providing respiratory support, and administering surfactants, especially in neonatal respiratory syndrome. The use of corticosteroids before delivery may also be considered to improve lung function in some cases.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "Fishman's Pulmonary Diseases and Disorders, 2-Volume Set, 5th edition" McGraw-Hill Education / Medical (2015)
  6. "Dyspnea" CRC Press (2014)
  7. "Essential Neonatal Medicine, Includes Desktop Edition" Wiley-Blackwell (2012)
  8. "Acute Respiratory Distress Syndrome" JAMA (2018)
  9. "Acute respiratory distress syndrome" Nature Reviews Disease Primers (2019)
  10. "Acute lung injury and the acute respiratory distress syndrome in the injured patient" Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine (2012)
  11. "Low-Tidal-Volume Ventilation in the Acute Respiratory Distress Syndrome" New England Journal of Medicine (2007)