00:00 / 00:00
Pathology
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Rheumatic heart disease
0 / 25 complete
0 / 4 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
rheumatic fever p. 321
rheumatic fever p. 320
rheumatic fever and p. 134
for rheumatic fever p. 321
prophylaxis (rheumatic fever) p. 195
chorea with p. 537
heart murmur with p. 298
Streptococcus pyogenes p. , 134
streptolysin O p. 131
type II hypersensitivity p. 110
rheumatic fever p. 320
“Rheumatism” is used to describe inflammation in the joints, muscles, and the fibrous tissue, so rheumatic fever is a type of inflammatory disease that can damage the heart tissue, and lead to rheumatic heart disease.
Rheumatic fever develops after streptococcal pharyngitis, inflammation of the throat due to Streptococcus pyogenes where pyogenes literally means “makes pus”. The bacteria is sometimes referred to as “Group A beta hemolytic” streptococcus, and the infection itself is most often just called Strep throat. This particular group of streptococcus has an antigen that lumps it into a group called “group A”, and it also produces an enzyme called streptolysin, that completely lyses nearby red blood cells, or causes them to rupture—rupturing red blood cells is called hemolysis, right? And when those red blood cells rupture and are destroyed, it’s called beta-hemolysis—as opposed to alpha-hemolysis, where cells aren’t actually destroyed, they’re just damaged or bruised.
Some of these strep bacteria have a protein on their cell wall called “M protein”, and this particular protein is highly antigenic, meaning that the immune system sees it and recognizes it as a foreign molecule, and mounts an immune response, which rightfully so, produces antibodies against these proteins. Those antibodies, though, are thought to cross-react with proteins on some of our body’s own cells, like cells in the myocardium (or heart muscle) and heart valves, but also cells in the joints, the skin and the brain.
This phenomenon, where antibodies accidentally target proteins on our own cells because they look like the proteins on foreign cells, is called molecular mimicry, and is an example of what’s called a type 2 hypersensitivity reaction. Once bound to cardiac tissue, the antibodies activate nearby immune cells, which causes a cytokine-mediated inflammatory response and tissue destruction.
Obviously though, not everyone that gets strep throat gets rheumatic fever, right? And it’s actually only a small minority that get it, estimated around 3%, and it’s more likely to happen in children or people in areas of poverty and crowding.
Rheumatic heart disease is a condition that develops as a complication of rheumatic fever, which is an inflammatory disease that can occur as a complication of streptococcal infections such as strep throat. This occurs due to the antibodies against streptococcal M proteins that cross-react with proteins in the myocardium, heart valves, joints, skin, and brain.
Rheumatic heart disease is characterized by heart tissue scarring that damages the heart valves, leading to problems such as mitral stenosis, and aortic regurgitation. Symptoms of rheumatic heart disease include shortness of breath, fatigue, chest pain, and heart palpitations. Treatment may involve antibiotics to prevent further streptococcal infections, and surgery to repair or replace damaged heart valves.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.