00:00 / 00:00
Bacteriology
Bacterial structure and functions
Bacillus anthracis (Anthrax)
Bacillus cereus (Food poisoning)
Corynebacterium diphtheriae (Diphtheria)
Listeria monocytogenes
Clostridium botulinum (Botulism)
Clostridium difficile (Pseudomembranous colitis)
Clostridium perfringens
Clostridium tetani (Tetanus)
Actinomyces israelii
Nocardia
Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus saprophyticus
Streptococcus agalactiae (Group B Strep)
Streptococcus pneumoniae
Streptococcus pyogenes (Group A Strep)
Streptococcus viridans
Enterococcus
Bacteroides fragilis
Bartonella henselae (Cat-scratch disease and Bacillary angiomatosis)
Enterobacter
Escherichia coli
Klebsiella pneumoniae
Legionella pneumophila (Legionnaires disease and Pontiac fever)
Proteus mirabilis
Pseudomonas aeruginosa
Salmonella (non-typhoidal)
Salmonella typhi (typhoid fever)
Serratia marcescens
Shigella
Yersinia enterocolitica
Yersinia pestis (Plague)
Campylobacter jejuni
Helicobacter pylori
Vibrio cholerae (Cholera)
Moraxella catarrhalis
Neisseria gonorrhoeae
Neisseria meningitidis
Bordetella pertussis (Pertussis/Whooping cough)
Brucella
Francisella tularensis (Tularemia)
Haemophilus ducreyi (Chancroid)
Haemophilus influenzae
Pasteurella multocida
Chlamydia pneumoniae
Chlamydia trachomatis
Gardnerella vaginalis (Bacterial vaginosis)
Mycoplasma pneumoniae
Coxiella burnetii (Q fever)
Ehrlichia and Anaplasma
Rickettsia rickettsii (Rocky Mountain spotted fever) and other Rickettsia species
Borrelia burgdorferi (Lyme disease)
Borrelia species (Relapsing fever)
Leptospira
Treponema pallidum (Syphilis)
Shigella
0 / 3 complete
of complete
Shigella is a Gram-negative bacterium that belongs to the Enterobacteriaceae family.
There are 4 species of Shigella:
S. dysenteriae, S. flexneri; S. boydii; and S. sonnei, and each has its own serotypes.
In humans these species can all cause Shigellosis, which is a contagious infection of the intestines, particularly the colon.
And shigellosis can progress to dysentery, which is when the infection causes inflammation of the colon, resulting in severe abdominal pain and diarrhea.
Now, Shigella is a gram-negative, rod shaped bacterium, meaning it looks like a little red or pink stick on a gram stain.
And it’s a facultative anaerobe, so it can survive with or without oxygen in the environment.
It has no flagellum, making it nonmotile; and it doesn’t form spores.
It’s also a non-lactose fermenter, so it doesn’t ferment lactose; and it’s urease and oxidase-negative, meaning it doesn’t produce these enzymes.
Finally, it doesn’t produce hydrogen sulfide gas either, and this can be used to selectively identify Shigella on special culture mediums like MacConkey agar.
On this medium, Shigella mostly forms white, non-lactose fermenting, non-hydrogen sulfide-producing colonies
Now, once Shigella is ingested, it multiplies in the small intestine, and then passes into the colon.
There, it targets the epithelial layer of the mucosal lining where it infects colonic enterocytes and microfold cells, or M-cells.
And these M-cells phagocytose, which means they eat the bacteria from the intestinal lumen, and then spit it out into the underlying mucosa-associated lymphoid tissues, or MALTs.
MALTs are a type of mucosal immune tissue that extends into the submucosa, and contains plenty of immune cells like macrophages.
The macrophages gobble up Shigella to neutralize the pathogen, but the bacterium induces apoptosis, or programmed cell death, in the macrophage.
Shigella is a genus of bacteria known to cause a contagious form of gastroenteritis known as shigellosis. Shigellosis is characterized by an inflammation of the gastrointestinal tract, which causes destruction and inflammation of the epithelium, leading to dysentery with symptoms like severe abdominal and rectal cramping and pain, a fever, and watery diarrhea with mucous with or without blood or pus. Shigella is transmitted through the fecal-to-oral route, mainly through fingers, food, and flies. It's diagnosed with a fecal sample and treatment centers around fluid and electrolyte replenishment and antibiotics.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.