Shock: Pathology review

6,602views

test

00:00 / 00:00

Shock: Pathology review

Back to the Basic Sciences

Acutely ill child

Antidiuretic hormone
Body fluid compartments
Movement of water between body compartments
Sodium homeostasis
Acid-base disturbances: Pathology review
Diabetes insipidus and SIADH: Pathology review
Electrolyte disturbances: Pathology review
Renal failure: Pathology review
Acyanotic congenital heart defects: Pathology review
Adrenal masses: Pathology review
Bacterial and viral skin infections: Pathology review
Bone tumors: Pathology review
Coagulation disorders: Pathology review
Congenital neurological disorders: Pathology review
Cyanotic congenital heart defects: Pathology review
Extrinsic hemolytic normocytic anemia: Pathology review
Eye conditions: Inflammation, infections and trauma: Pathology review
Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review
Headaches: Pathology review
Intrinsic hemolytic normocytic anemia: Pathology review
Leukemias: Pathology review
Lymphomas: Pathology review
Macrocytic anemia: Pathology review
Microcytic anemia: Pathology review
Mixed platelet and coagulation disorders: Pathology review
Nasal, oral and pharyngeal diseases: Pathology review
Nephritic syndromes: Pathology review
Nephrotic syndromes: Pathology review
Non-hemolytic normocytic anemia: Pathology review
Pediatric brain tumors: Pathology review
Pediatric musculoskeletal disorders: Pathology review
Platelet disorders: Pathology review
Renal and urinary tract masses: Pathology review
Seizures: Pathology review
Viral exanthems of childhood: Pathology review
Adrenal insufficiency: Pathology review
Central nervous system infections: Pathology review
Childhood and early-onset psychological disorders: Pathology review
Congenital gastrointestinal disorders: Pathology review
Diabetes mellitus: Pathology review
Electrolyte disturbances: Pathology review
Environmental and chemical toxicities: Pathology review
Gastrointestinal bleeding: Pathology review
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Inflammatory bowel disease: Pathology review
Medication overdoses and toxicities: Pathology review
Obstructive lung diseases: Pathology review
Pediatric brain tumors: Pathology review
Pediatric musculoskeletal disorders: Pathology review
Pneumonia: Pathology review
Psychiatric emergencies: Pathology review
Seizures: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Traumatic brain injury: Pathology review
Ventricular arrhythmias: Pathology review
Central nervous system infections: Pathology review
Congenital TORCH infections: Pathology review
Jaundice: Pathology review
Respiratory distress syndrome: Pathology review

Therapeutics

Pharmacodynamics: Agonist, partial agonist and antagonist
Pharmacodynamics: Desensitization and tolerance
Pharmacodynamics: Drug-receptor interactions
Pharmacokinetics: Drug absorption and distribution
Pharmacokinetics: Drug elimination and clearance
Pharmacokinetics: Drug metabolism
Androgens and antiandrogens
Estrogens and antiestrogens
Miscellaneous cell wall synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Penicillins
Antihistamines for allergies
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Antimetabolites: Sulfonamides and trimethoprim
Antituberculosis medications
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
DNA synthesis inhibitors: Fluoroquinolones
DNA synthesis inhibitors: Metronidazole
Miscellaneous cell wall synthesis inhibitors
Miscellaneous protein synthesis inhibitors
Protein synthesis inhibitors: Aminoglycosides
Protein synthesis inhibitors: Tetracyclines
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Pulmonary corticosteroids and mast cell inhibitors
Glucocorticoids
Bronchodilators: Beta 2-agonists and muscarinic antagonists
Bronchodilators: Leukotriene antagonists and methylxanthines
Azoles
Glucocorticoids
Pulmonary corticosteroids and mast cell inhibitors
Acetaminophen (Paracetamol)
Non-steroidal anti-inflammatory drugs
Antimetabolites: Sulfonamides and trimethoprim
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
Miscellaneous protein synthesis inhibitors
Protein synthesis inhibitors: Tetracyclines
Cell wall synthesis inhibitors: Cephalosporins
Glucocorticoids
Miscellaneous protein synthesis inhibitors
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants
Cell wall synthesis inhibitors: Cephalosporins
Cell wall synthesis inhibitors: Penicillins
Miscellaneous cell wall synthesis inhibitors

Evaluaciones

USMLE® Step 1 questions

0 / 8 complete

Preguntas

Preguntas del estilo USMLE® Step 1

0 de 8 completadas

A 78-year-old male presents to the emergency department with altered mental status and fatigue. He is found to be critically ill and is admitted to the intensive care unit (ICU) for further evaluation and monitoring. While in the ICU, the patient has a Swan-Ganz catheter placed in the right heart for continuous hemodynamic measurements. An initial set of readings is demonstrated below:


Which of the following is the most likely cause of this patient's clinical presentation?

Transcripción

Ver video solo

Amina is a 42-year-old female who was brought to the emergency department after her car crashed into a tree. According to paramedics, part of the car was on fire upon arrival. During resuscitation, her vitals showed a blood pressure of 70 over 50 and a heart rate of 140. Upon examination, her extremities are cold and clammy and there were multiple first and second-degree burns on her neck, abdomen and lower extremities. Additionally, auscultation reveals decreased air entry on the left side of her chest, and this is Amina’s chest x-ray. Palpation of the pelvis produced significant tenderness, prompting the ED physician to order a pelvic x-ray. After resuscitating Amina, another individual is rolled into the emergency department. Anastasia, 77 years old, comes in with high fever and chills and a 5-day history of dysuria and flank pain. Her blood pressure is 80 over 40 and heart rate is 120 beats per minute. On examination, her extremities are warm and flushed.

Both people have a life threatening condition called Shock. Shock is defined as inadequate organ perfusion that results in hypoxia and cellular damage.. Perfusion of organs is normally maintained by the arterial blood pressure. The mean arterial pressure is equal to the cardiac output times the systemic vascular resistance. So, any alteration to the components of this equation can potentially lead to shock. On the exam, look for hypotension as an initial clue for shock. Others include tachycardia, decreased urine output and altered mental status.

Now we can classify shock into 2 major categories. There’s “cold” or low cardiac output shock, and “warm” or distributive shock where there’s decreased systemic vascular resistance. Okay, let’s start with “cold” shock. This includes cardiogenic, hypovolemic and obstructive shock. In cardiogenic shock, the cardiac output is compromised because of a problem with the heart. This could range from congestive heart failure, acute myocardial infarction, valvular dysfunction, to even a myocardial contusion from trauma, basically anything that could prevent the heart from pumping enough blood to the rest of the body. In response to the ensuing hypotension, the baroreceptors in the aorta and carotid arteries induce a sympathetic reflex that results in vasoconstriction of the peripheral arterioles, which increases the systemic vascular resistance. This vasoconstriction is good, as it redirects blood flow from non-vital organs like the skin, to more vital organs like the brain. As a result, the skin will feel cold and clammy on examination. Another clue is the pulmonary capillary wedge pressure, or PCWP for short, which is measured by inserting a catheter into a small pulmonary arterial branch. In cardiogenic shock, this is elevated because more blood remains in the left side of the heart and it prevents pulmonary venous return. The blood backs up into the pulmonary vessels, and the increase in pressure pushes fluid into the interstitium and alveoli of the lungs, resulting in acute pulmonary edema. This classically presents with shortness of breath and crackles on auscultation as a result of acute pulmonary edema. Now, SvO2, or Mixed Venous Oxygen Saturation, will be lower. This is measured in the right atrium and reflects the total amount of oxygen going back to the heart. In cardiogenic shock, blood flow is slower than normal, so any oxygen that remains in the blood is extracted furiously by the tissues, and so we'll see a lower content of oxygen when blood returns to the heart. Treatment of cardiogenic shock depends on the underlying cause and may include inotropic medications or mechanical support devices to improve cardiac contractility

Next is hypovolemic shock. In this type, intravascular volume is decreased, which decreases venous return to the heart, and ultimately cardiac output. So similarly to cardiogenic shock, hypovolemic shock makes the skin feel cold and clammy due to peripheral vasoconstriction. This also increases systemic vascular resistance. Now, since intravascular volume is decreased, pulmonary capillary wedge pressure will also be low, and tissues will be pulling out as much oxygen as they can, leaving the SvO2 much lower. Hypovolemic shock has two subtypes; hemorrhagic, which is the most common, and non-hemorrhagic. Hemorrhagic shock usually results from blunt or penetrating trauma, such as injury to the liver, spleen, or long bone fractures, like femur fractures. Other causes of hemorrhagic shock that are non-traumatic include variceal bleeding or postpartum hemorrhage. Non-hemorrhagic causes of hypovolemic shock include anything that results in fluid loss, like diarrhea or vomiting. Also, burns increase capillary permeability, causing a tremendous amount of fluid to shift from the plasma to the interstitial space, which is called “third-spacing”. And this is why fluid replacement is crucial in the management of burns. Hypovolemic shock is treated with intravenous fluids and blood transfusions if it’s hemorrhagic.

Next is obstructive shock, which from the name, involves something that obstructs the heart and prevents it from pumping out enough blood. That blood builds up in the heart, so PCWP will be elevated, but it can't be pushed out, resulting in decreased cardiac output. Now the blood vessels will try to compensate by squeezing tighter in order to increase systemic vascular resistance. And tissues are trying to pull out oxygen from the limited blood supply soSvO2 will be lower. Now, a high-yield cause of obstructive shock is a tension pneumothorax, in which there is air in the pleural cavity that can push against the superior vena cava. This decreases venous return and ultimately, the stroke volume. For treatment, the air needs to be removed right away by inserting a needle or a chest tube in the space between the second and third rib of the affected side, on the midclavicular line, which provides an escape route for the trapped air. Also when blood collects in the pericardial sac, the resulting cardiac tamponade can limit the heart’s ability to fill up with blood. Treatment is pericardiocentesis. That’s where a needle is inserted into the pericardium to drain the excess pericardial fluid. Finally, a large pulmonary embolus can occlude the pulmonary trunk, compromising the right heart’s ability to pump blood to the lungs. Treatment is anticoagulation or thrombolysis.

Moving on to warm or distributive shock. The problem here is that the systemic vascular resistance is decreased due to peripheral vasodilation. Because of this vasodilation, the classic feature on physical exam is warm and flushed skin. To compensate for this, the heart tries to pump faster, so cardiac output can be elevated. The fluid load on the heart and the pulmonary capillary wedge pressure will be a little bit lowered. Intuitively, one would think that vasodilation increases blood flow, and therefore should actually increase the delivery of oxygen to tissues. Well, the thing is that, blood flow, in this case, is too fast, and tissues aren’t given enough time to extract the necessary oxygen. The exam will test you on this by asking what the mixed venous oxygen saturation would be in distributive shock. Because tissues aren’t extracting as much oxygen, the SvO2 would be high. And that’s unique for distributive shock! Another feature of distributive shock is an increased cardiac output. See, vasodilation increases venous return to the heart, which increases the stroke volume and therefore the cardiac output.

Fuentes

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Severe sepsis and septic shock" N Engl J Med (2013)
  4. "Septic shock" Lancet (2005)
  5. "Circulatory shock" N Engl J Med (2014)
  6. "Rapid Review Pathology" Elsevier (2018)
  7. "Fundamentals of Pathology" Pathoma (2019)
  8. "Distributive Shock in the Emergency Department: Sepsis, Anaphylaxis, or Capillary Leak Syndrome?" The Journal of Emergency Medicine (2017)
  9. "The Pathophysiology of Shock in Anaphylaxis" Immunology and Allergy Clinics of North America (2007)
  10. "Second symposium on the definition and management of anaphylaxis: Summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium" Journal of Allergy and Clinical Immunology (2006)