00:00 / 00:00
Pathology
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Shock: Pathology review
0 / 8 complete
of complete
Amina is a 42-year-old female who was brought to the emergency department after her car crashed into a tree. According to paramedics, part of the car was on fire upon arrival. During resuscitation, her vitals showed a blood pressure of 70 over 50 and a heart rate of 140. Upon examination, her extremities are cold and clammy and there were multiple first and second-degree burns on her neck, abdomen and lower extremities. Additionally, auscultation reveals decreased air entry on the left side of her chest, and this is Amina’s chest x-ray. Palpation of the pelvis produced significant tenderness, prompting the ED physician to order a pelvic x-ray. After resuscitating Amina, another individual is rolled into the emergency department. Anastasia, 77 years old, comes in with high fever and chills and a 5-day history of dysuria and flank pain. Her blood pressure is 80 over 40 and heart rate is 120 beats per minute. On examination, her extremities are warm and flushed.
Both people have a life threatening condition called Shock. Shock is defined as inadequate organ perfusion that results in hypoxia and cellular damage.. Perfusion of organs is normally maintained by the arterial blood pressure. The mean arterial pressure is equal to the cardiac output times the systemic vascular resistance. So, any alteration to the components of this equation can potentially lead to shock. On the exam, look for hypotension as an initial clue for shock. Others include tachycardia, decreased urine output and altered mental status.
Now we can classify shock into 2 major categories. There’s “cold” or low cardiac output shock, and “warm” or distributive shock where there’s decreased systemic vascular resistance. Okay, let’s start with “cold” shock. This includes cardiogenic, hypovolemic and obstructive shock. In cardiogenic shock, the cardiac output is compromised because of a problem with the heart. This could range from congestive heart failure, acute myocardial infarction, valvular dysfunction, to even a myocardial contusion from trauma, basically anything that could prevent the heart from pumping enough blood to the rest of the body. In response to the ensuing hypotension, the baroreceptors in the aorta and carotid arteries induce a sympathetic reflex that results in vasoconstriction of the peripheral arterioles, which increases the systemic vascular resistance. This vasoconstriction is good, as it redirects blood flow from non-vital organs like the skin, to more vital organs like the brain. As a result, the skin will feel cold and clammy on examination. Another clue is the pulmonary capillary wedge pressure, or PCWP for short, which is measured by inserting a catheter into a small pulmonary arterial branch. In cardiogenic shock, this is elevated because more blood remains in the left side of the heart and it prevents pulmonary venous return. The blood backs up into the pulmonary vessels, and the increase in pressure pushes fluid into the interstitium and alveoli of the lungs, resulting in acute pulmonary edema. This classically presents with shortness of breath and crackles on auscultation as a result of acute pulmonary edema. Now, SvO2, or Mixed Venous Oxygen Saturation, will be lower. This is measured in the right atrium and reflects the total amount of oxygen going back to the heart. In cardiogenic shock, blood flow is slower than normal, so any oxygen that remains in the blood is extracted furiously by the tissues, and so we'll see a lower content of oxygen when blood returns to the heart. Treatment of cardiogenic shock depends on the underlying cause and may include inotropic medications or mechanical support devices to improve cardiac contractility
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.