Staphylococcus aureus
665,969views

00:00 / 00:00
Staphylococcus aureus
Bacteriology
Introduction to bacteria
Gram positive bacteria
Gram negative bacteria
Mycobacteria
Other bacteria
Assessments
Flashcards
0 / 33 complete
USMLE® Step 1 questions
0 / 14 complete
Flashcards
Staphylococcus aureus
0 of 33 complete
Questions
USMLE® Step 1 style questions USMLE
0 of 14 complete
External References
First Aid
2024
2023
2022
2021
Arthritis p. 472
Staphylococcus aureus p. , 133
Bacterial endocarditis p. 318
Staphylococcus aureus p. , 133
Endocarditis
Staphylococcus aureus p. , 133
Food poisoning
Staphylococcus aureus p. , 133
Inflammatory diseases
Staphylococcus aureus p. , 133
Osteomyelitis p. 177
Staphylococcus aureus p. , 133
Pneumonia p. 701
Staphylococcus aureus p. , 133
Scalded skin syndrome
Staphylococcus aureus p. , 133
Septic arthritis p. 474
Staphylococcus aureus p. , 133
Staphylococcus aureus p. , 133
bacterial endocarditis p. 319
β -hemolytic nature of p. 133
brain abscesses p. 177
cephalosporins p. 186
cystic fibrosis p. 58, 176
dapsone p. 192
exotoxin production p. 131
food poisoning p. 175
immunocompromised patients p. 176
influenza p. 166
IV drug use p. 177
lung abscess p. 704
nosocomial infection p. 176, 182
osteomyelitis and p. 177
penicillins for p. 185
pigment production p. 127
pneumonia p. NaN
postviral infection p. 176
prophylaxis for p. 194
septic arthritis p. 474
skin infections p. 487
Toxic shock syndrome p. 131
Staphylococcus aureus p. , 133
Virulence factors
Staphylococcus aureus p. , 133
Transcript
Content Reviewers
Contributors
Staphylococcus aureus, sometimes called staph aureus, is coccal, or round-shaped, and grows in clusters.
In fact, its name, broken down, means “golden cluster of grapes”.
It sorta starts making sense if you look at it under a microscope - it tends to grow in sticky clusters, and it stains purple when Gram-stained due to its peptidoglycan cell wall, so it’s Gram positive and it resembles grapes.
As for its “golden” color, when it’s grown on blood agar plates, the colonies have a distinctive golden-yellow color.
Staphylococcus aureus are Gram positive and facultative anaerobes, meaning that they can survive in aerobic and anaerobic environments.
They’re non-motile and don’t form spores.
Staphylococci produce an enzyme called catalase which converts hydrogen peroxide to water and oxygen.
Other common cocci, such as streptococci and enterococci, are catalase negative so they don’t have this ability and we can use a few drops of hydrogen peroxide to differentiate them.
Catalase positive bacteria will foam up, while in catalase negative bacteria, nothing happens.
Now, a couple of other staphylococci species, like Staph epidermidis and Staph saprophyticus are also catalase positive, so to distinguish between them we can look for another enzyme that’s made by Staph aureus, called coagulase.
Coagulase converts fibrinogen into fibrin.
So let’s say that we stir up some Staph aureus bacteria in a liquid “emulsion”, and then add a few drops of plasma which contains fibrinogen. The coagulase positive staph aureus will convert the soluble fibrinogen to sticky fibrin, which then visibly clumps up, whereas coagulase negative bacteria won’t.
Staph aureus is extremely common and about a quarter of the population is colonized by it, usually in their nostrils, groin, armpits, and other parts of their skin.
But, most of the time it’s a normal part of our skin flora, and doesn’t cause trouble.
The skin flora is a complex ecosystem of different bacterial species and occasionally, Staph aureus can begin to dominate that ecosystem.
In individuals that have staph aureus colonization, a number of factors like the pH, humidity, sweat levels of the skin, as well as presence of other bacteria on our skin, all affect the amount of staph aureus that’s present.
If more and more Staph aureus is around on the skin, it begins to penetrate through tiny microfissures in the skin, like you get with eczema, as well as larger breaks in the skin like you might get after shaving.
In fact, it’s particularly troublesome in terms of causing wound infections where there is a large break in the skin either from trauma or after a surgery.
So low levels of staph aureus with intact skin leads to colonization, whereas high levels of Staph aureus with breaks in the skin lead to infections.
When staph aureus invades into the skin it can lead to localized skin infections like a pimple which can evolve into a furuncle, or a boil.
A bunch of furuncles clustered together make a carbuncle.
There can also be diffuse skin infections, like superficial impetigo which is an infection of the epidermis, or deeper-reaching cellulitis, which is an infection of the dermis and can spread over larger surfaces rapidly.
If the infection goes deeper, it can develop into a subcutaneous abscess - a collection of pus that’s walled off and sometimes develops thin walls within it - called septations.
These abscesses can occur all over the body including in the mouth where they’re called dental abscesses, and they can develop within various organs like the liver, kidney, spleen, and brain.
Now if the infection is overlying a muscle, it can spread into the muscle causing a pyomyositis.
If it gets into the bone it can cause osteomyelitis, and if it gets into the joint space it can cause septic arthritis.
Finally, if Staph aureus gets into the bloodstream, it can cause a septic thrombophlebitis - an infected blood clot.
In addition, bacteria in the blood is called bacteremia, and it can lead to a number of serious problems.
There’s typically a widespread immune reaction that causes the blood vessels to expand and the blood pressure to fall. The result is hypotension and poor perfusion to various organs - a process called sepsis.
Once it’s in the blood, Staph aureus can also get to various parts of the body.
It can get into the central nervous system - causing bacterial meningitis or an epidural abscess in the spine.
It can get into the lungs causing a severe pneumonia.
It can start to grow on the heart valves in clumps called vegetations - damaging the valves - a process called infective endocarditis.
Bits of the vegetations can then chip off and embolize further causing other local infections around the body.
Now, in addition to invading the body through the skin, Staph aureus can also enter directly into the bloodstream when a person is getting surgery or having dental work done. These events occur infrequently, but when they do come up it’s important to take precautions.
For example, individuals at high risk of getting serious disease with Staph aureus - like immunocompromised individuals or those that are at risk for infective endocarditis - should be given antibiotic prophylaxis.
Another property of our golden staph is its ability to create biofilm on medical implants like indwelling intravenous catheters, prosthetic heart valves, and artificial joints.
The biofilm is, essentially, a layer of “slime” within which the Staph aureus live. It forms when a cluster of Staph aureus adheres to a surface either a natural one like the surface of a valve or an artificial one like the surface of a catheter.
The bacteria start to produce extracellular matrix made of exopolysaccharides, or EPS, and over time the cells get completely surrounded by it.
The cells that are surrounded by the gel-like layer of exopolysaccharides, can communicate with one other through biochemical signals and can even swap genetic information back and forth - including antibiotic resistance genes.
In addition, Staph aureus thrives but doesn’t divide rapidly within these biofilms, and it’s relatively hard for antibiotics to penetrate into the biofilms.
Combined that makes it much harder to get rid of these biofilm infections, and often requires simply removing the surface that they’re growing on, if possible.
If all of this wasn’t enough, S. aureus can also release superantigens or toxins.
In fact, there are five major toxins related to S. aureus - toxic shock syndrome toxin 1, or TSST-1, Panton-Valentine leukocidin toxin, hemolysin, exfoliatin, and enterotoxin… toxin.
Summary
Staphylococcus aureus, also known as "staph," is a gram-positive, beta-hemolytic, catalase, and coagulase-positive bacteria, which is known to cause a wide range of infections in humans. Staph is normally part of the human normal skin and nasal flora, but if it overgrows or if the skin is damaged, then it can cause disease through direct colonization, toxin production, or both.
Staph is known to cause skin infections, organ abscesses, pneumonia, endocarditis, septic arthritis, and osteomyelitis. Staph infections are typically treated with antibiotics, but in some cases, the bacteria may be resistant to the antibiotics that are commonly used. Methicillin-resistant Staphylococcus aureus (MRSA) is a type of staph that is resistant to many antibiotics and is a significant public health concern.