Skip to content

Supraventricular arrhythmias: Pathology review




Cardiovascular system

Vascular disorders
Congenital heart defects
Cardiac arrhythmias
Valvular disorders
Heart failure
Cardiac infections
Pericardial disorders
Cardiac tumors
Cardiovascular system pathology review

Supraventricular arrhythmias: Pathology review


1 / 11 complete

USMLE® Step 1 style questions USMLE

11 questions

A 73-year-old female presents to the emergency department with shortness of breath. She is concerned her “COPD is flaring up.” Past medical history is notable for hypertension, chronic obstructive pulmonary disease, and type II diabetes mellitus. She has been smoking one pack of cigarettes per day for twenty years. Temperature is 37.0°C (98.6°F), pulse is 136/min, respirations are 22/min, blood pressure is 104/72 mmHg, and oxygen saturation is 92% on room air. The patient is currently speaking in three to four word sentences and demonstrates increased work of breathing. There are bilateral rales throughout the lung fields, and the electrocardiogram from triage is shown below:  

Based on this patient's electrocardiogram, which of the following is the most likely diagnosis?  


Content Reviewers:

Antonia Syrnioti, MD

Melissa is a 21 year old college student who is having the time of her life at a party. It’s late, and unfortunately she has class the next morning, so she drinks a ton of coffee to sober up. On her way out, Melissa collapses to the floor, but wakes up after a couple of seconds. On her way to the emergency room, she tells the paramedics that she’s “aware of her heartbeat”. Then comes Taylor, a 32 year old female who is brought to the emergency room by her partner because she suddenly collapsed for a couple of minutes while cooking dinner. Taylor is now awake, and she tells you that right before collapsing she was feeling dizzy and like her heart was racing, but now she’s fine. They are both placed on different monitors. Melissa’s heart rate is 200 beats per minute and regular, and this is Melissa’s ECG. On the other hand, Taylor’s heart rate is 80 beats per minute and regular, so everything seems fine. However, her ECG shows this.

All right, so both Melissa and Taylor experienced palpitations and syncope, and their ECGs reveal they both have some form of arrhythmia. The best way to approach arrhythmias is to first: know what a normal ECG looks like, and second: have a good classification system to narrow down the diagnosis.

First, let’s review the normal electrical conduction pathway in the heart, and how it looks like on an ECG. An ECG tracing specifically shows how the depolarization wave flows through the heart during each heartbeat. The normal electrical activity of the heart starts in the sinoatrial or SA node and is then conducted through the atrium, creating the P wave on ECG. From the atrium, electrical activity goes to the atrioventricular, or AV node, after which it goes through the Bundle of His, then the right and left branches of the Bundle, and finally through the Purkinje fibers, which deliver the current to the right and left ventricles. On an ECG, this will create the QRS complex, which represents the depolarization of the ventricles; and finally the T wave, which represents the repolarization of the ventricles. To help identify an irregular rhythm you can look at the morphology of the waveform and make sure that there is a P wave before every QRS complex, and a QRS complex after every P wave.

Now let’s take a look at the heart rate. The resting