T-cell activation

37,738views

00:00 / 00:00

T-cell activation

SSP

SSP

Abnormal heart sounds
Normal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Baroreceptors
Blood pressure, blood flow, and resistance
Cardiac conduction velocity
Cardiac cycle
Cardiac excitation-contraction coupling
Cardiovascular system anatomy and physiology
Cerebral circulation
Changes in pressure-volume loops
Chemoreceptors
Compliance of blood vessels
Coronary circulation
ECG basics
ECG axis
ECG intervals
ECG rate and rhythm
ECG QRS transition
ECG normal sinus rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Electrical conduction in the heart
Excitability and refractory periods
Frank-Starling relationship
Laminar flow and Reynolds number
Lymphatic system anatomy and physiology
Microcirculation and Starling forces
Pressure-volume loops
Pressures in the cardiovascular system
Renin-angiotensin-aldosterone system
Resistance to blood flow
Stroke volume, ejection fraction, and cardiac output
Cellular structure and function
Selective permeability of the cell membrane
Cell-cell junctions
Osmosis
Cell signaling pathways
Cytoskeleton and intracellular motility
Cell membrane
Extracellular matrix
Endocytosis and exocytosis
Resting membrane potential
Nuclear structure
Atrophy, aplasia, and hypoplasia
Hair, skin and nails
Skin anatomy and physiology
Wound healing
Parathyroid hormone
Calcitonin
Vitamin D
Glucagon
Insulin
Synthesis of adrenocortical hormones
Cortisol
Thyroid hormones
Growth hormone and somatostatin
Adrenocorticotropic hormone
Endocrine system anatomy and physiology
Androgens and antiandrogens
Gastrointestinal system anatomy and physiology
Anatomy and physiology of the teeth
Enteric nervous system
Hunger and satiety
Esophageal motility
Chewing and swallowing
Gastric motility
Pancreatic secretion
Bile secretion and enterohepatic circulation
Liver anatomy and physiology
Carbohydrates and sugars
Proteins
Prebiotics and probiotics
Hydration
Fats and lipids
Blood components
Platelet plug formation (primary hemostasis)
Coagulation (secondary hemostasis)
Role of Vitamin K in coagulation
Clot retraction and fibrinolysis
Blood groups and transfusions
Introduction to the immune system
Vaccinations
Innate immune system
Complement system
B-cell development
T-cell development
Cytokines
Antibody classes
B-cell activation and differentiation
Somatic hypermutation and affinity maturation
T-cell activation
VDJ rearrangement
MHC class I and MHC class II molecules
Cell-mediated immunity of CD4 cells
Cell-mediated immunity of natural killer and CD8 cells
Contracting the immune response and peripheral tolerance
B- and T-cell memory
Skeletal system anatomy and physiology
Cartilage structure and growth
Bone remodeling and repair
Fibrous, cartilage, and synovial joints
Muscular system anatomy and physiology
Muscle contraction
Slow twitch and fast twitch muscle fibers
Sliding filament model of muscle contraction
Neuromuscular junction and motor unit
Nervous system anatomy and physiology
Anatomy and physiology of the eye
Anatomy and physiology of the ear
Neuron action potential
Sympathetic nervous system
Parasympathetic nervous system
Adrenergic receptors
Cholinergic receptors
Pyramidal and extrapyramidal tracts
Basal ganglia: Direct and indirect pathway of movement
Cerebellum
Somatosensory receptors
Optic pathways and visual fields
Vestibular transduction
Olfactory transduction and pathways
Taste and the tongue
Vestibulo-ocular reflex and nystagmus
Auditory transduction and pathways
Photoreception
Somatosensory pathways
Cranial nerves
Brachial plexus
Muscle spindles and golgi tendon organs
Renal system anatomy and physiology
Body fluid compartments
Movement of water between body compartments
Renal clearance
Kidney countercurrent multiplication
Antidiuretic hormone
Osmoregulation
Regulation of renal blood flow
Measuring renal plasma flow and renal blood flow
Glomerular filtration
Proximal convoluted tubule
Distal convoluted tubule
Urea recycling
Tubular secretion of PAH
Tubular reabsorption of glucose
Physiologic pH and buffers
Buffering and Henderson-Hasselbalch equation
The role of the kidney in acid-base balance
Plasma anion gap
Acid-base map and compensatory mechanisms
Metabolic acidosis
Metabolic alkalosis
Respiratory acidosis
Respiratory alkalosis
Phosphate, calcium and magnesium homeostasis
Loop of Henle
Anatomy and physiology of the female reproductive system
Estrogen and progesterone
Oxytocin and prolactin
Menstrual cycle
Pregnancy
Stages of labor
Breastfeeding
Menopause
Anatomy and physiology of the male reproductive system
Testosterone
Puberty and Tanner staging
Respiratory system anatomy and physiology
Lung volumes and capacities
Ventilation
Alveolar surface tension and surfactant
Anatomic and physiologic dead space
Alveolar gas equation
Hypoxia
Oxygen binding capacity and oxygen content
Oxygen-hemoglobin dissociation curve
Erythropoietin
Carbon dioxide transport in blood
Regulation of pulmonary blood flow
Zones of pulmonary blood flow
Pulmonary shunts
Ventilation-perfusion ratios and V/Q mismatch

Assessments

USMLE® Step 1 questions

0 / 3 complete

High Yield Notes

18 pages

Questions

USMLE® Step 1 style questions USMLE

0 of 3 complete

A bacterial antigen is presented to a CD4+ T-cell via the MHC II protein. Which additional signals must be present on the antigen-presenting cell for T-cell activation to occur?  

Transcript

Watch video only

Content Reviewers

The immune response is highly specific for each invader, and that’s because the cells of the adaptive immune response have receptors that can differentiate friendly bacteria from potentially deadly pathogens from their unique parts - called antigens.

The key cells of the adaptive immune response are the lymphocytes - the B and T cells.

T cells develop in the thymus where they undergo a process called VDJ rearrangement to generate a massively diverse set of T cell receptors, or TCRs.

There are two types of T cells which are identified based on molecules they express on their surface.

Helper T cells express CD4 on their surface, and their main function is to support other immune cells.

Cytotoxic T cells express CD8 on their surface, and their main function is to kill infected or cancerous cells.

A T cell starts out naive and then gets primed or activated - at which point it differentiates into an effector T cell and proliferates. Activation of both helper and cytotoxic T cells requires two signals.

After that the cytokines present around the cell determine the type of T cell it will become. The first signal occurs when a T cell receptor binds to an antigen.

Now, a T cell receptor can only recognize antigens that are peptides, rather than carbohydrates or lipids.

And the T cell receptor also needs to have a peptide presented on a major histocompatibility complex, also known as MHC.

MHC molecules act like serving platters present the antigen to T cells.There are two types of MHC molecules that work with the two types of T cells.

MHC class I molecules present antigen to CD8+ T cells and MHC class II molecules present antigen to CD4+ T cells.

MHC class II molecules are found on the surface of an antigen presenting cell like a macrophage or dendritic cells while MHC class I molecules are found on all nucleated cells throughout the body.

The antigen presented on the MHC molecule must be the right size and shape to bind strongly to the T cell receptor which is part of the CD3 complex.

The CD3 complex has 8 peptide chains, one alpha, one beta, one gamma, one delta, two epsilon, and two zeta chains.

The antigen binding site of the T cell receptor is composed of the alpha chain and the beta chain, each of which have two domains - a variable domain and a constant domain.

The variable regions of the alpha and beta chains of the CD3 complex of the T cell receptor bind the antigen, and the remainder of the CD3 complex binds to the MHC molecule.

Whether it binds MHC I or MHC II depends on if the T cell expresses CD4 or CD8.

The constant domain has a short transmembrane segment and a short cytoplasmic segment.

The transmembrane segment contains cysteine residues which allow two adjacent chains to form a disulfide bond, connecting the chains to one another.

And the variable domain of the alpha and beta chain come together to form a single antigen binding site. This is different from the B cell receptor which has two antigen binding sites.

Also, unlike the B cell receptor, the T cell receptor is surface bound and cannot be secreted.

Now, in addition to the T cell receptor, CD4 binds to the MHC class II molecule and CD8 binds to the MHC class I molecule - and that helps securing the interaction between the T cell receptor and the MHC molecule.

Second, the cytoplasmic portion of the alpha and beta chains of the T cell receptor are rather short.

As a result, the signal that the T cell receptor has successfully bound an antigen, gets sent down other portions of the CD3 complex as well as the CD4 or CD8 molecules. The second signal required for T cell activation is called co-stimulation.

And it’s when a ligand that’s on the surface of a T cell called CD28, binds to a ligand called B7 on the antigen presenting cell.

Antigen presenting cells start expressing higher levels of B7 on their surface when there are inflammatory cytokines like interferon-gamma, IL-1 beta, and TNF-alpha around.

Now, if a T cell sees its antigen without costimulation it become anergic, meaning that the cell won’t get activated, even if it sees the antigen in the future.

Summary

T-cell activation is the process by which an antigen-presenting cell (APC) activates a T-cell. It is an important part of the immune system, as it helps the body to fight off infections and other foreign invaders. During T-cell activation, the APC presents antigen to the T-cell receptor, which then triggers a cascade of signals inside the T-cell, leading to the activation and proliferation of the T-cell. The activation of the T-cell leads to the production of cytokines and other immunological molecules, which help to target and destroy the invading pathogen.