Transposition of the great vessels

40,283views

test

00:00 / 00:00

Transposition of the great vessels

ETP Cardiovascular System

ETP Cardiovascular System

Introduction to the cardiovascular system
Anatomy of the heart
Anatomy of the coronary circulation
Anatomy clinical correlates: Heart
Anatomy of the superior mediastinum
Anatomy of the inferior mediastinum
Anatomy clinical correlates: Mediastinum
Development of the cardiovascular system
Fetal circulation
Cardiac muscle histology
Artery and vein histology
Arteriole, venule and capillary histology
Cardiovascular system anatomy and physiology
Lymphatic system anatomy and physiology
Coronary circulation
Blood pressure, blood flow, and resistance
Pressures in the cardiovascular system
Laminar flow and Reynolds number
Resistance to blood flow
Compliance of blood vessels
Control of blood flow circulation
Microcirculation and Starling forces
Measuring cardiac output (Fick principle)
Stroke volume, ejection fraction, and cardiac output
Cardiac contractility
Frank-Starling relationship
Cardiac preload
Cardiac afterload
Law of Laplace
Cardiac and vascular function curves
Altering cardiac and vascular function curves
Cardiac cycle
Cardiac work
Pressure-volume loops
Changes in pressure-volume loops
Physiological changes during exercise
Cardiovascular changes during hemorrhage
Cardiovascular changes during postural change
Normal heart sounds
Abnormal heart sounds
Action potentials in myocytes
Action potentials in pacemaker cells
Excitability and refractory periods
Cardiac excitation-contraction coupling
Electrical conduction in the heart
Cardiac conduction velocity
ECG basics
ECG rate and rhythm
ECG intervals
ECG QRS transition
ECG axis
ECG normal sinus rhythm
ECG cardiac infarction and ischemia
ECG cardiac hypertrophy and enlargement
Baroreceptors
Chemoreceptors
Renin-angiotensin-aldosterone system
Arterial disease
Angina pectoris
Stable angina
Unstable angina
Myocardial infarction
Prinzmetal angina
Coronary steal syndrome
Peripheral artery disease
Subclavian steal syndrome
Aneurysms
Aortic dissection
Vasculitis
Behcet's disease
Kawasaki disease
Hypertension
Hypertensive emergency
Renal artery stenosis
Coarctation of the aorta
Cushing syndrome
Conn syndrome
Pheochromocytoma
Polycystic kidney disease
Hypotension
Orthostatic hypotension
Abetalipoproteinemia
Familial hypercholesterolemia
Hypertriglyceridemia
Hyperlipidemia
Chronic venous insufficiency
Thrombophlebitis
Deep vein thrombosis
Lymphedema
Lymphangioma
Shock
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Truncus arteriosus
Transposition of the great vessels
Total anomalous pulmonary venous return
Tetralogy of Fallot
Hypoplastic left heart syndrome
Patent ductus arteriosus
Ventricular septal defect
Atrial septal defect
Atrial flutter
Atrial fibrillation
Premature atrial contraction
Atrioventricular nodal reentrant tachycardia (AVNRT)
Wolff-Parkinson-White syndrome
Ventricular tachycardia
Brugada syndrome
Premature ventricular contraction
Long QT syndrome and Torsade de pointes
Ventricular fibrillation
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Tricuspid valve disease
Pulmonary valve disease
Mitral valve disease
Aortic valve disease
Dilated cardiomyopathy
Restrictive cardiomyopathy
Hypertrophic cardiomyopathy
Heart failure
Cor pulmonale
Endocarditis
Myocarditis
Rheumatic heart disease
Pericarditis and pericardial effusion
Cardiac tamponade
Dressler syndrome
Cardiac tumors
Acyanotic congenital heart defects: Pathology review
Cyanotic congenital heart defects: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Coronary artery disease: Pathology review
Peripheral artery disease: Pathology review
Valvular heart disease: Pathology review
Cardiomyopathies: Pathology review
Heart failure: Pathology review
Supraventricular arrhythmias: Pathology review
Ventricular arrhythmias: Pathology review
Heart blocks: Pathology review
Aortic dissections and aneurysms: Pathology review
Pericardial disease: Pathology review
Endocarditis: Pathology review
Hypertension: Pathology review
Shock: Pathology review
Vasculitis: Pathology review
Cardiac and vascular tumors: Pathology review
Dyslipidemias: Pathology review
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
ACE inhibitors, ARBs and direct renin inhibitors
Thiazide and thiazide-like diuretics
Calcium channel blockers
cGMP mediated smooth muscle vasodilators
Class I antiarrhythmics: Sodium channel blockers
Class II antiarrhythmics: Beta blockers
Class III antiarrhythmics: Potassium channel blockers
Class IV antiarrhythmics: Calcium channel blockers and others
Lipid-lowering medications: Statins
Lipid-lowering medications: Fibrates
Miscellaneous lipid-lowering medications
Positive inotropic medications
Cardiomyopathies: Clinical
Congenital heart defects: Clinical
Valvular heart disease: Clinical
Infective endocarditis: Clinical
Pericardial disease: Clinical
Chest trauma: Clinical
Hypertension: Clinical
Pulmonary hypertension
Aortic aneurysms and dissections: Clinical
Raynaud phenomenon
Peripheral vascular disease: Clinical
Heart failure: Clinical
Coronary artery disease: Clinical
Deep vein thrombosis and pulmonary embolism: Pathology review
Fascia, vessels and nerves of the upper limb
Vessels and nerves of the forearm
Vessels and nerves of the hand
Anatomy of the abdominal viscera: Blood supply of the foregut, midgut and hindgut
Fascia, vessels, and nerves of the lower limb
Vessels and nerves of the gluteal region and posterior thigh
Anatomy of the popliteal fossa
Ventilation
Ventilation-perfusion ratios and V/Q mismatch
Gas exchange in the lungs, blood and tissues
Oxygen binding capacity and oxygen content
Oxygen-hemoglobin dissociation curve
Carbon dioxide transport in blood
Trypanosoma cruzi (Chagas disease)
Yellow fever virus
Rickettsia rickettsii (Rocky Mountain spotted fever) and other Rickettsia species
Arteriovenous malformation
Cerebral circulation

Assessments

Flashcards

0 / 8 complete

USMLE® Step 1 questions

0 / 1 complete

High Yield Notes

12 pages

Flashcards

Transposition of the great vessels

0 of 8 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 1 complete

A 3-day-old female infant is brought to the emergency department due to difficulty breathing. She was born at term through normal vaginal delivery to a 30-year-old woman who had full prenatal care. The mother reports that the patient was fine after birth and recently started developing blue-colored skin and rapid breathing at home. Temperature is 37°C (98.6°F), pulse is 155/min, respirations are 65/min, and blood pressure is 80/50 mm Hg. Pulse oximetry shows an oxygen saturation of 80% on room air. Arterial blood gas analysis on room air shows PO2 of 30 mm Hg. Physical examination shows central cyanosis and retractions of the rib cage. 100% oxygen through a nasal cannula and PGE1 are administered. The patient’s airway is stable, and a chest radiograph is obtained (shown below). Which of the following is the most likely diagnosis?  


Reproduced from: Radiopaedia 

External References

First Aid

2024

2023

2022

2021

Transposition of great vessels p. 302

cyanosis with p. 731

embryologic development p. 286

maternal diabetes and p. 304

Transcript

Watch video only

Normally, the heart is set up so that the left ventricle pumps oxygenated blood out to the body through the aorta; deoxygenated blood comes back to the right atrium, flows into the right ventricle, and is pumped to the lungs through the pulmonary artery. From the pulmonary artery, it comes back to the left atrium, flows into the left ventricle, and the whole process restarts. The “great arteries,” are the two main arteries taking blood away from the heart: the aorta and pulmonary artery. “Transposing” means that two things switch places with each other. So, transposition of the great arteries, or TGA, is when these two arteries swap locations.

Normally, blood flows through all of these chambers and blood vessels in a big circuit, but if you switch these two main arteries, you switch from one big circuit to two smaller circuits. On the left side, blood is now pumped from the left ventricle, to the pulmonary artery, and to the lungs; it then comes back to the left atrium and left ventricle, and restarts the circuit. On the right side, blood is pumped out of the right ventricle through the aorta, and then goes to the body; blood comes back the the right atrium and right ventricle, and restarts the circuit. Blood on the right side therefore never gets oxygenated, and blood on the left side never gets deoxygenated. This isn’t good. This situation is actually called complete TGA, or sometimes dextro-TGA or d-TGA; dextro means “right,” because, in this case, the aorta is in front of and primarily to the right of the pulmonary artery.

All right, when the fetus in still in the mother’s uterus, babies with d-TGA don’t have any symptoms because they aren’t using their lungs yet. Instead, they rely on blood from the mother and a few shunts for blood flow, including: the foramen ovale, a gap between the atria; the ductus arteriosus, a vessel connecting the aorta and pulmonary artery; and the ductus venosus, a vessel connecting the umbilical cord to the inferior vena cava.

However, after birth, when the baby has to use its lungs for oxygen, these shunts normally go away, the foramen ovale closes, and the vessels become ligaments. This essentially means that d-TGA leads to death, unless there is some way for blood between the pulmonary and systemic circulations to mix. Some possibilities of this happening are if the foramen ovale or ductus arteriosus stay open, or if the baby has a ventricular septal defect, which happens when there’s a shunt between the ventricles — this is actually present in about a third of cases. Any of these possibilities allow the two independent circuits to mix blood and deliver some oxygenated blood to the tissues.

This being said, this system still isn’t very efficient, and a significant amount of deoxygenated blood gets sent to the body’s tissues, which causes cyanosis, a bluish-purple discoloration of the mouth, lips, fingertips, and toes — all areas furthest away from the heart. Sometimes, babies might be given prostaglandin E, which keeps the ductus arteriosus open; however, this is typically only a short-term solution, and ultimately the baby’s going to need surgical repair.

Summary

Transposition of the great vessels (TGA) is a congenital heart defect in which the positions of the two main blood vessels leaving the heart, the pulmonary artery and the aorta, are switched. This means that the oxygen-rich blood from the lungs is pumped back to the lungs instead of being circulated to the body. The oxygen-poor blood from the body is pumped back to the body instead of being circulated to the lungs. TGA can cause severe oxygen deprivation in the body and can lead to life-threatening complications. TGA is not compatible with life unless there is a shunt (VSD, PDA, patent foramen ovale). Also, without prompt treatment, most infants die within the first few months of life. The treatment for TGA involves surgery to switch the positions of the blood vessels.