Traumatic brain injury: Clinical (To be retired)

15,043views

00:00 / 00:00

Videos

Notes

Traumatic brain injury: Clinical (To be retired)

Subspeciality surgery

Cardiothoracic surgery

Coronary artery disease: Clinical (To be retired)

Valvular heart disease: Clinical (To be retired)

Pericardial disease: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Pleural effusion: Clinical (To be retired)

Pneumothorax: Clinical (To be retired)

Lung cancer: Clinical (To be retired)

Anatomy clinical correlates: Thoracic wall

Anatomy clinical correlates: Heart

Anatomy clinical correlates: Pleura and lungs

Anatomy clinical correlates: Mediastinum

Adrenergic antagonists: Beta blockers

ACE inhibitors, ARBs and direct renin inhibitors

cGMP mediated smooth muscle vasodilators

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Plastic surgery

Benign hyperpigmented skin lesions: Clinical (To be retired)

Skin cancer: Clinical (To be retired)

Blistering skin disorders: Clinical (To be retired)

Bites and stings: Clinical (To be retired)

Burns: Clinical (To be retired)

ENT (Otolaryngology)

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Trigeminal nerve (CN V)

Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves

Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves

Anatomy clinical correlates: Skull, face and scalp

Anatomy clinical correlates: Ear

Anatomy clinical correlates: Temporal regions, oral cavity and nose

Anatomy clinical correlates: Bones, fascia and muscles of the neck

Anatomy clinical correlates: Vessels, nerves and lymphatics of the neck

Anatomy clinical correlates: Viscera of the neck

Antihistamines for allergies

Neurosurgery

Stroke: Clinical (To be retired)

Seizures: Clinical (To be retired)

Headaches: Clinical (To be retired)

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Brain tumors: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves

Anatomy clinical correlates: Trigeminal nerve (CN V)

Anatomy clinical correlates: Facial (CN VII) and vestibulocochlear (CN VIII) nerves

Anatomy clinical correlates: Glossopharyngeal (CN IX), vagus (X), spinal accessory (CN XI) and hypoglossal (CN XII) nerves

Anatomy clinical correlates: Vertebral canal

Anatomy clinical correlates: Spinal cord pathways

Anatomy clinical correlates: Cerebral hemispheres

Anatomy clinical correlates: Anterior blood supply to the brain

Anatomy clinical correlates: Cerebellum and brainstem

Anatomy clinical correlates: Posterior blood supply to the brain

Anticonvulsants and anxiolytics: Barbiturates

Anticonvulsants and anxiolytics: Benzodiazepines

Nonbenzodiazepine anticonvulsants

Migraine medications

Osmotic diuretics

Antiplatelet medications

Thrombolytics

Ophthalmology

Eye conditions: Refractive errors, lens disorders and glaucoma: Pathology review

Eye conditions: Retinal disorders: Pathology review

Eye conditions: Inflammation, infections and trauma: Pathology review

Anatomy clinical correlates: Olfactory (CN I) and optic (CN II) nerves

Anatomy clinical correlates: Oculomotor (CN III), trochlear (CN IV) and abducens (CN VI) nerves

Anatomy clinical correlates: Eye

Orthopedic surgery

Joint pain: Clinical (To be retired)

Lower back pain: Clinical (To be retired)

Anatomy clinical correlates: Clavicle and shoulder

Anatomy clinical correlates: Axilla

Anatomy clinical correlates: Arm, elbow and forearm

Anatomy clinical correlates: Wrist and hand

Anatomy clinical correlates: Median, ulnar and radial nerves

Anatomy clinical correlates: Bones, joints and muscles of the back

Anatomy clinical correlates: Hip, gluteal region and thigh

Anatomy clinical correlates: Knee

Anatomy clinical correlates: Leg and ankle

Anatomy clinical correlates: Foot

Trauma surgery

Traumatic brain injury: Clinical (To be retired)

Neck trauma: Clinical (To be retired)

Chest trauma: Clinical (To be retired)

Abdominal trauma: Clinical (To be retired)

Urology

Penile conditions: Pathology review

Prostate disorders and cancer: Pathology review

Testicular tumors: Pathology review

Kidney stones: Clinical (To be retired)

Renal cysts and cancer: Clinical (To be retired)

Urinary incontinence: Pathology review

Testicular and scrotal conditions: Pathology review

Anatomy clinical correlates: Male pelvis and perineum

Anatomy clinical correlates: Female pelvis and perineum

Anatomy clinical correlates: Other abdominal organs

Anatomy clinical correlates: Inguinal region

Androgens and antiandrogens

PDE5 inhibitors

Adrenergic antagonists: Alpha blockers

Vascular surgery

Peripheral vascular disease: Clinical (To be retired)

Leg ulcers: Clinical (To be retired)

Aortic aneurysms and dissections: Clinical (To be retired)

Anatomy clinical correlates: Anterior and posterior abdominal wall

Adrenergic antagonists: Beta blockers

Lipid-lowering medications: Statins

Lipid-lowering medications: Fibrates

Miscellaneous lipid-lowering medications

Antiplatelet medications

Thrombolytics

Assessments

Traumatic brain injury: Clinical (To be retired)

USMLE® Step 2 questions

0 / 29 complete

Questions

USMLE® Step 2 style questions USMLE

of complete

A 20-year-old male presents to the emergency department after being involved in a motor vehicle accident as an unrestrained passenger. Upon arrival, the patient becomes obtunded and goes into respiratory distress requiring intubation and mechanical ventilation. A head CT is obtained as shown in the exhibit. Neurosurgery evacuates the epidural hematoma and places an intracranial pressure (ICP) monitoring probe which reveals that his ICP remains elevated. Post-op vital signs include a temperature of 36.9ºC (98.4ºF), a blood pressure of 120/80 mmHg, a heart rate of 89/min, a respiratory rate of 14/min, and an oxygen saturation of 100% on 30% FiO2. Which of the following would be an appropriate treatment to lower this patient's intracranial pressure?

Transcript

Content Reviewers

Rishi Desai, MD, MPH

Contributors

Alex Aranda

When an external force damages the head - the result is head trauma, and if there’s temporary or permanent brain dysfunction, we call it a traumatic brain injury, or TBI. This external force could be a blunt impact, like a baseball bat, a penetrating injury, like a gunshot wound, a blast wave, like an explosion, or an accelerating-decelerating force, like in a motor vehicle crash. The most common causes of TBIs are falls and motor vehicle crashes, and high-risk groups include the elderly and individuals using alcohol and illicit drugs. When TBIs occur in children, non-accidental trauma, or child abuse, should always be considered. 

TBIs can cause primary injuries which are a direct result of the external force. These include skull injuries like fractures; blood vessel injuries like an epidural or subdural hematoma, or a subarachnoid or intracerebral hemorrhage; and brain parenchymal injuries like brain contusions and diffuse axonal injury. Sometimes, primary injuries can lead to secondary injuries - like cerebral herniation, seizures, and increased intracranial pressure

When an individual has a suspected head trauma, the initial evaluation starts with the primary survey, during which the “ABCDEs” are assessed. “A” is for airway, and individuals with a traumatic brain injury may not be able to protect their airway, leading to aspiration and hypoxia, which can worsens the brain injury. These individuals may require endotracheal intubation and mechanical ventilation. “B” is for breathing, and if there’s increased intracranial pressure, it can lead to an irregular breathing pattern - which is part of the Cushing triad. “C” is for circulation, and hypertension and bradycardia are the two remaining features in the Cushing’s triad. There may also be hypotension, which can reduce brain perfusion. 

Summary

Elsevier

Copyright © 2023 Elsevier, except certain content provided by third parties

Cookies are used by this site.

USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.

RELX