test

00:00 / 00:00

Traumatic brain injury: Pathology review

Watch later

Watch later

Lead poisoning
Hemolytic disease of the newborn
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Autoimmune hemolytic anemia
Pyruvate kinase deficiency
Paroxysmal nocturnal hemoglobinuria
Sickle cell disease (NORD)
Hereditary spherocytosis
Aplastic anemia
Fanconi anemia
Megaloblastic anemia
Folate (Vitamin B9) deficiency
Vitamin B12 deficiency
Diamond-Blackfan anemia
Acute intermittent porphyria
Porphyria cutanea tarda
Hemophilia
Vitamin K deficiency
Bernard-Soulier syndrome
Glanzmann's thrombasthenia
Hemolytic-uremic syndrome
Thrombotic thrombocytopenic purpura
Von Willebrand disease
Disseminated intravascular coagulation
Heparin-induced thrombocytopenia
Antithrombin III deficiency
Factor V Leiden
Protein C deficiency
Protein S deficiency
Antiphospholipid syndrome
Hodgkin lymphoma
Non-Hodgkin lymphoma
Chronic leukemia
Acute leukemia
Leukemoid reaction
Myelodysplastic syndromes
Polycythemia vera (NORD)
Myelofibrosis (NORD)
Essential thrombocythemia (NORD)
Langerhans cell histiocytosis
Multiple myeloma
Monoclonal gammopathy of undetermined significance
Waldenstrom macroglobulinemia
Microcytic anemia: Pathology review
Heme synthesis disorders: Pathology review
Anticoagulants: Heparin
Anticoagulants: Warfarin
Anticoagulants: Direct factor inhibitors
Antiplatelet medications
Thrombolytics
Introduction to the immune system
Cytokines
Innate immune system
Complement system
T-cell development
B-cell development
MHC class I and MHC class II molecules
T-cell activation
B-cell activation and differentiation
Cell-mediated immunity of CD4 cells
Cell-mediated immunity of natural killer and CD8 cells
Antibody classes
Somatic hypermutation and affinity maturation
VDJ rearrangement
Contracting the immune response and peripheral tolerance
B- and T-cell memory
Anergy, exhaustion, and clonal deletion
Vaccinations
Type I hypersensitivity
Type II hypersensitivity
Type III hypersensitivity
Type IV hypersensitivity
Sepsis
Neonatal sepsis
Abscesses
Food allergy
Anaphylaxis
Rheumatic heart disease
Myasthenia gravis
Graves disease
Pemphigus vulgaris
Serum sickness
Systemic lupus erythematosus
Poststreptococcal glomerulonephritis
Graft-versus-host disease
Contact dermatitis
Transplant rejection
Cytomegalovirus infection after transplant (NORD)
Post-transplant lymphoproliferative disorders (NORD)
X-linked agammaglobulinemia
Selective immunoglobulin A deficiency
Common variable immunodeficiency
IgG subclass deficiency
Hyperimmunoglobulin E syndrome
Isolated primary immunoglobulin M deficiency
Thymic aplasia
DiGeorge syndrome
Severe combined immunodeficiency
Adenosine deaminase deficiency
Ataxia-telangiectasia
Hyper IgM syndrome
Wiskott-Aldrich syndrome
Leukocyte adhesion deficiency
Chediak-Higashi syndrome
Chronic granulomatous disease
Complement deficiency
Hereditary angioedema
Asplenia
Thymoma
Ruptured spleen
Development of the integumentary system
Skin anatomy and physiology
Hair, skin and nails
Wound healing
Vitiligo
Albinism
Acne vulgaris
Folliculitis
Rosacea
Hidradenitis suppurativa
Atopic dermatitis
Lichen planus
Pityriasis rosea
Psoriasis
Seborrhoeic dermatitis
Urticaria
Actinic keratosis
Epidermolysis bullosa
Bullous pemphigoid
Erythema multiforme
Stevens-Johnson syndrome
Pressure ulcer
Sunburn
Burns
Frostbite
Cellulitis
Erysipelas
Impetigo
Necrotizing fasciitis
Human papillomavirus
Varicella zoster virus
Poxvirus (Smallpox and Molluscum contagiosum)
Coxsackievirus
Herpes simplex virus
Candida
Malassezia (Tinea versicolor and Seborrhoeic dermatitis)
Pediculus humanus and Phthirus pubis (Lice)
Sarcoptes scabiei (Scabies)
Human herpesvirus 6 (Roseola)
Parvovirus B19
Measles virus
Rubella virus
Vascular tumors
Human herpesvirus 8 (Kaposi sarcoma)
Angiosarcomas
Skin cancer
Alopecia areata
Telogen effluvium
Onychomycosis
Development of the axial skeleton
Development of the limbs
Development of the muscular system
Skeletal system anatomy and physiology
Bone remodeling and repair
Cartilage structure and growth
Fibrous, cartilage, and synovial joints
Muscular system anatomy and physiology
Brachial plexus
Neuromuscular junction and motor unit
Sliding filament model of muscle contraction
Slow twitch and fast twitch muscle fibers
Muscle contraction
Muscle spindles and golgi tendon organs
Radial head subluxation (Nursemaid elbow)
Developmental dysplasia of the hip
Legg-Calve-Perthes disease
Slipped capital femoral epiphysis
Transient synovitis
Osgood-Schlatter disease (traction apophysitis)
Rotator cuff tear
Dislocated shoulder
Winged scapula
Thoracic outlet syndrome
Carpal tunnel syndrome
Ulnar claw
Erb-Duchenne palsy
Klumpke paralysis
Iliotibial band syndrome
Unhappy triad
Anterior cruciate ligament injury
Patellar tendon rupture
Meniscus tear
Patellofemoral pain syndrome
Sprained ankle
Achilles tendon rupture
Spondylolysis
Spondylolisthesis
Degenerative disc disease
Spinal disc herniation
Sciatica
Compartment syndrome
Rhabdomyolysis
Osteogenesis imperfecta
Craniosynostosis
Pectus excavatum
Arthrogryposis
Genu valgum
Genu varum
Pigeon toe
Flat feet
Club foot
Cleidocranial dysplasia
Achondroplasia
Osteomyelitis
Bone tumors
Osteochondroma
Chondrosarcoma
Osteoporosis
Osteomalacia and rickets
Osteopetrosis
Paget disease of bone
Osteosclerosis
Lordosis, kyphosis, and scoliosis
Osteoarthritis
Spondylosis
Spinal stenosis
Rheumatoid arthritis
Juvenile idiopathic arthritis
Gout
Calcium pyrophosphate deposition disease (pseudogout)
Psoriatic arthritis
Ankylosing spondylitis
Reactive arthritis
Spondylitis
Septic arthritis
Bursitis
Baker cyst
Muscular dystrophy
Polymyositis
Dermatomyositis
Inclusion body myopathy
Polymyalgia rheumatica
Fibromyalgia
Rhabdomyosarcoma
Lambert-Eaton myasthenic syndrome
Sjogren syndrome
Mixed connective tissue disease
Raynaud phenomenon
Scleroderma
Development of the nervous system
Nervous system anatomy and physiology
Neuron action potential
Cerebral circulation
Blood brain barrier
Cerebrospinal fluid
Cranial nerves
Ascending and descending spinal tracts
Sympathetic nervous system
Adrenergic receptors
Parasympathetic nervous system
Cholinergic receptors
Body temperature regulation (thermoregulation)
Hunger and satiety
Cerebellum
Basal ganglia: Direct and indirect pathway of movement
Memory
Sleep
Consciousness
Learning
Stress
Language
Emotion
Attention
Spina bifida
Chiari malformation
Dandy-Walker malformation
Syringomyelia
Tethered spinal cord syndrome
Aqueductal stenosis
Septo-optic dysplasia
Cerebral palsy
Spinocerebellar ataxia (NORD)
Transient ischemic attack
Ischemic stroke
Intracerebral hemorrhage
Epidural hematoma
Subdural hematoma
Subarachnoid hemorrhage
Saccular aneurysm
Arteriovenous malformation
Broca aphasia
Wernicke aphasia
Wernicke-Korsakoff syndrome
Kluver-Bucy syndrome
Concussion and traumatic brain injury
Shaken baby syndrome
Epilepsy
Febrile seizure
Early infantile epileptic encephalopathy (NORD)
Tension headache
Cluster headache
Migraine
Idiopathic intracranial hypertension
Trigeminal neuralgia
Cavernous sinus thrombosis
Alzheimer disease
Vascular dementia
Frontotemporal dementia
Lewy body dementia
Creutzfeldt-Jakob disease
Normal pressure hydrocephalus
Torticollis
Essential tremor
Restless legs syndrome
Parkinson disease
Huntington disease
Opsoclonus myoclonus syndrome (NORD)
Multiple sclerosis
Central pontine myelinolysis
Acute disseminated encephalomyelitis
Transverse myelitis
JC virus (Progressive multifocal leukoencephalopathy)
Adult brain tumors
Acoustic neuroma (schwannoma)
Pituitary adenoma
Pediatric brain tumors
Brain herniation
Brown-Sequard Syndrome
Cauda equina syndrome
Treponema pallidum (Syphilis)
Friedreich ataxia
Neurogenic bladder
Meningitis
Neonatal meningitis
Encephalitis
Brain abscess
Epidural abscess
Sturge-Weber syndrome
Tuberous sclerosis
Neurofibromatosis
von Hippel-Lindau disease
Amyotrophic lateral sclerosis
Spinal muscular atrophy
Poliovirus
Guillain-Barre syndrome
Charcot-Marie-Tooth disease
Bell palsy
Orthostatic hypotension
Horner syndrome
Congenital neurological disorders: Pathology review
Headaches: Pathology review
Seizures: Pathology review
Cerebral vascular disease: Pathology review
Traumatic brain injury: Pathology review
Spinal cord disorders: Pathology review
Dementia: Pathology review
Central nervous system infections: Pathology review
Movement disorders: Pathology review
Neuromuscular junction disorders: Pathology review
Demyelinating disorders: Pathology review
Adult brain tumors: Pathology review
Pediatric brain tumors: Pathology review
Neurocutaneous disorders: Pathology review
Cholinomimetics: Direct agonists
Cholinomimetics: Indirect agonists (anticholinesterases)
Muscarinic antagonists
Sympathomimetics: Direct agonists
Sympatholytics: Alpha-2 agonists
Adrenergic antagonists: Presynaptic
Adrenergic antagonists: Alpha blockers
Adrenergic antagonists: Beta blockers
Anticonvulsants and anxiolytics: Barbiturates
Anticonvulsants and anxiolytics: Benzodiazepines
Nonbenzodiazepine anticonvulsants

Assessments

USMLE® Step 1 questions

0 / 17 complete

Questions

USMLE® Step 1 style questions USMLE

0 of 17 complete

A 30-year-old woman is brought to the emergency department following a fall during a climbing trip. Her partner, who accompanied her, reports that the patient fell from a 4-meter height and hit her head. En route to the hospital, the patient is comatose and unresponsive. Glasgow Coma Score is 3. She is sedated and intubated. On arrival, her temperature is 36.0°C (96.8°F), pulse is 43/min, respirations are 7/min and irregular, and blood pressure is 200/70 mmHg. On physical examination, her arms are stiff and bent, with clenched fists and outstretched legs. Both pupils are fixed and dilated. A non-contrast CT is obtained and shows a large biconvex-shaped lesion. Which of the following additional findings is most likely to be present?  

Transcript

Watch video only

At the emergency department, 65-year-old Christian came in complaining of headaches, vision problems, and memory loss. These symptoms have gradually progressed over the past couple of weeks. On examination, there’s slurred speech, and his gait is unsteady. He has a history of chronic alcohol abuse. Head CT shows a “crescent-shaped” hyperdense mass that crosses the suture lines. Later that day, 33-year-old Max is brought in after a fight. They reported being knocked unconscious, but regained consciousness after an unknown period of time. Head CT is ordered and shows a “lens-shaped” hyperdense mass that doesn’t cross the suture lines. Max was very agitated and said they felt fine. They then left the hospital against medical advice. Later that day, Max lost consciousness again and died at home.

Okay, so Christian and Max had some form of traumatic brain injury. When an external force damages the head resulting in temporary or permanent brain dysfunction, we call it a traumatic brain injury, or TBI. Now, as a direct result of the external force, TBIs can cause extra-axial and intra-axial injuries. Extra-axial injuries are within the skull but don’t involve the brain parenchyma. The most high yield ones are epidural and subdural hematomas, as well as a subarachnoid hemorrhage. Intra-axial injuries - on the other hand - do involve the brain parenchyma, and the most high yield one for your exams is diffuse axonal injury. Now, the initial brain injury can impair the normal functioning of the cerebral metabolism and result in complications, such as tissue hypoxia, cognitive impairment, and seizures. Additionally, if the brain injury is associated with intracranial bleeding or severe inflammation followed by edema, the pressure within the skull may rise and result in severe complications. For your exams, it’s important to note that the most important complication of increased intracranial pressure is brain herniation. Trauma initiates a series of molecular events along with the primary brain injury, which can persist for hours, or even days. These are referred to as “secondary brain injury”, and eventually can result in increased intracranial pressure, which in turn, has numerous consequences, and for the exams, the most important is brain herniation.

Okay, now let’s take a closer look at these different types of traumatic brain injury, starting with the extra-axial injuries.

Epidural hematomas οccur when blood collects in the space between the dura mater (which is the outer layer of the meninges) and the inner aspect of the skull periosteum. This happens when a linear fracture occurs at the region where the frontal, parietal, temporal, and sphenoid bones join together. This region is called pterion, and it’s the thinnest part of the lateral wall of the skull. For the test, remember that a fracture at the pterion can tear open the middle meningeal artery (a branch of the maxillary artery) causing profuse bleeding. The most important concept to keep in mind is that individuals with epidural hematoma classically have a period of loss of consciousness and then a lucid interval. During this time the individual regains consciousness and feels fine, but a lucid interval isn’t always seen. Symptoms are due to the build of blood trapped between the dura mater and skull, which increases intracranial pressure. Now, what makes epidural hematomas so dangerous is that the dura mater is attached tightly to the sutures of the skull, so the blood can’t cross these sutures and is trapped with nowhere to go. This means the intracranial pressure can increase rapidly. The individual can develop headaches, nausea, vomiting, and focal neurological symptoms like weakness, numbness, vision and auditory problems. As the hematoma grows rapidly, it can cause a life-threatening brain herniation resulting in the loss of consciousness, coma, and death.

A brain CT is diagnostic, and classically shows a convex, “lens-shaped” hyperdense collection of blood that does not cross the suture lines of the skull. There can also be evidence of scalp hematoma due to the head trauma. In addition to the bleeding, there can be surrounding cerebral edema, and if the edema is significant, it can cause a shift of the midline to the contralateral side. This signifies an impending brain herniation, most commonly a transtentorial herniation. Epidural hematomas are an emergency, and neurosurgical intervention is often necessary.

All right, moving onto subdural hematomas. For your exams, it’s important to know that a subdural hematoma occurs when blood collects between the dura mater (the outer layer of the meninges) and arachnoid mater, which is the middle layer of the meninges. Another high yield fact you have to know is that, unlike epidural hematomas, the bleeding source is usually the bridging veins that connect the cerebral venous sinuses to the superficial veins of the skull. Now, the bridging veins are very vulnerable to rapid acceleration or deceleration, so they are easily damaged in car crashes. It’s also high yield to remember that when there’s brain atrophy and shrinkage - like in chronic alcohol users or the elderly - the bridging veins get stretched out. So even minor head trauma, like walking into a door, can lead to a subdural hematoma in these individuals. Oftentimes, individuals don’t even remember the traumatic event, so it’s important to always consider a subdural hematoma especially in elderly individuals with neurological symptoms. If a subdural hematoma is detected in an infant or young child, it could be due to non-accidental trauma, or child abuse. Infants and children have large heads with relatively small brains, so vigorously shaking a young child can cause a subdural hematoma, as well as other signs of non-accidental trauma like retinal hemorrhages on fundoscopy. Okay, because the source of the bleeding is venous, the hematoma usually grows slower than epidural hematomas caused by arterial bleeding. Also, since the blood isn’t restricted by sutures, it can be distributed over a larger area, so pressure doesn’t build up as quickly, unless the hemorrhage is very large. Because of these factors, subdural hematomas tend to be more insidious. Now, as the blood accumulates, intracranial pressure increases causing symptoms like worsening headaches, nausea or vomiting, visual problems, slurred speech, dizziness, unsteady gait, confusion, cognitive impairment, seizures, and hemiparesis that can be ipsilateral or contralateral. A subdural hematoma is considered acute if symptoms develop within 2 days of a head trauma, subacute if they develop between 2 days and 2 weeks of a head trauma, and chronic if they develop 2 weeks or more after a head trauma. Just like with epidural hematomas, if a subdural hematoma grows large enough, it can lead to brain herniation and coma or death.

Now, a brain CT is usually diagnostic, and classically shows a concave, “crescent-shaped” density that crosses the suture lines, and that’s extremely high yield! And the density on the brain CT helps determine the age of the hematoma. Acute subdural hematomas are hyperdense, while chronic subdural hematomas are hypodense. Subacute subdural hematomas appear isodense, meaning they blend in with the adjacent brain parenchyma, making them easy to miss. Also, a midline shift can be seen on CT. The morbidity and mortality of subdural hematomas are high because they can develop more insidiously and are therefore harder to detect in the early stages.

Similar to epidural hematomas, the mainstay of treatment is prompt surgical hematoma evacuation. Sometimes, stable individuals with acute small hematomas can be managed nonoperatively, as the hematoma is reabsorbed naturally.

Next, there’s a subarachnoid hemorrhage, which is bleeding between the arachnoid mater and pia mater: the innermost layer of the meninges. In general, the most common cause of subarachnoid hemorrhage is head trauma, while the most common cause of spontaneous subarachnoid hemorrhage is the rupture of an aneurysm. Aneurysms can burst open when there’s an increase in intracranial pressure. The most common aneurysms in the brain are saccular cerebral aneurysms, also called berry aneurysms. They typically arise in the anterior half of the circle of Willis at bifurcations. Bifurcations are junctions between arteries, and the most common junction where saccular aneurysms take place is between the anterior communicating artery, or ACoA for short, and the anterior cerebral artery, or ACA. Some genetic disorders like autosomal dominant polycystic kidney disease, Marfan syndrome, and Ehlers-Danlos syndrome can predispose even young individuals to saccular aneurysms, and that’s a fact that gets frequently tested on the exams! And a less frequent cause of spontaneous subarachnoid hemorrhage is an arteriovenous malformation, which is formed by abnormal tangled blood vessels that aren’t used to high arterial pressures and can rupture easily.

In most cases, subarachnoid hemorrhage progresses rapidly due to arterial bleeding, and individuals complain of an excruciating headache also known as thunderclap headaches that are described as "the worst headache of my life". There can also be nuchal rigidity, seizures, and symptoms of increased intracranial pressure like vomiting, vision changes, and confusion.

The diagnosis of a subarachnoid hemorrhage is usually made with brain imaging; in most cases, this is done with a CT scan. Brain imaging shows blood in the ventricular cisterns, interhemispheric fissures, and within the sulci. The more blood that’s seen, the worse the outcome. Now, in cases of a spontaneous subarachnoid hemorrhage, if the brain imaging is negative, then the diagnosis can be made with a lumbar puncture and cerebrospinal fluid analysis. When there is spontaneous subarachnoid hemorrhage, the test will show red blood cells or xanthochromia; which is a result of red blood cell breakdown. In the case of a traumatic subarachnoid hemorrhage, a lumbar puncture is contraindicated due to the high intracranial pressure and the risk of brain herniation.

Initial management of a subarachnoid hemorrhage is supportive. But rebleeding is very frequent, so the only effective treatment is prompt surgery like aneurysm repair. A complication that can occur about 2 days to 2 weeks after a subarachnoid hemorrhage is post-traumatic vasospasm of the subarachnoid vessels, which can cause cerebral ischemia. Therefore, individuals are given a calcium channel blocker called nimodipine, which relaxes the cerebral vascular smooth muscle, preventing vasospasm. Another potential complication is hydrocephalus, which can lead to increased intracranial pressure. This can present with progressive deterioration in the level of consciousness, and ventricular dilation can be seen on CT scan. Some individuals with a subarachnoid hemorrhage develop electrolyte imbalances like hyponatremia due to water retention. This can result from one of three things: the syndrome of inappropriate secretion of antidiuretic hormone or SIADH, cerebral salt wasting caused by excessive secretion of natriuretic peptides, or diminished central sympathetic activity. Other common complications of a subarachnoid hemorrhage are fever of infectious and noninfectious origin and seizures.

Summary

Traumatic brain injury (TBI) is a type of injury that occurs when an external force blows or jolts the head, resulting in temporary or permanent brain dysfunction. Sometimes, TBI can lead to increased intracranial pressure, which can have various consequences, like brain herniations that are life-threatening.

TBI can range from mild to severe and can result in a wide range of physical, cognitive, and emotional symptoms. Symptoms can include headaches, confusion, memory loss, difficulty concentrating, mood changes, and more.

Diagnosis can be made based on clinical presentation, imaging tests of the brain, like CT or MRI, or other techniques such as a lumbar puncture. TBIs usually require surgery. Treatment for TBI typically involves drugs such as mannitol to control intracranial pressure, antiseizure medications like phenobarbital to control seizures, and neurosurgical interventions like when there is a need for hematoma evacuation.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Brain Injury" Springer Science & Business Media (2001)
  4. "Adams and Victor's Principles of Neurology, Ninth Edition" McGraw Hill Professional (2009)
  5. "Neuropsychiatric Sequelae of Traumatic Brain Injury" Psychosomatics (2000)
  6. "Classification of Traumatic Brain Injury for Targeted Therapies" Journal of Neurotrauma (2008)
  7. "Communication Disorders Following Traumatic Brain Injury" NA (1999)
  8. "Pathophysiology of traumatic brain injury" British Journal of Anaesthesia (2007)
  9. "Pioglitazone Therapy and Fractures: Systematic Review and Meta- Analysis" Endocrine, Metabolic & Immune Disorders - Drug Targets (2018)
  10. "Brain Herniation and Intracranial Hypertension" Neurologic Clinics (2021)