Skip to content

Tuberous sclerosis

Videos

Notes

Genetics

Genetics

Population genetics
Genetic disorders
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Fragile X syndrome
Huntington disease
Myotonic dystrophy
Friedreich ataxia
Turner syndrome
Klinefelter syndrome
Prader-Willi syndrome
Angelman syndrome
Beckwith-Wiedemann syndrome
Cri du chat syndrome
Williams syndrome
Alagille syndrome (NORD)
Achondroplasia
Polycystic kidney disease
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Polycystic kidney disease
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Krabbe disease
Leukodystrophy
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Primary ciliary dyskinesia
Phenylketonuria (NORD)
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Alpha-thalassemia
Beta-thalassemia
Wilson disease
Fragile X syndrome
Alport syndrome
X-linked agammaglobulinemia
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Lesch-Nyhan syndrome
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
Mitochondrial myopathy
Autosomal trisomies: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Miscellaneous genetic disorders: Pathology review

Assessments
Tuberous sclerosis

Flashcards

0 / 13 complete

Questions

0 / 3 complete
High Yield Notes
0 pages
Flashcards

Tuberous sclerosis

13 flashcards
Questions

USMLE® Step 1 style questions USMLE

3 questions

USMLE® Step 2 style questions USMLE

3 questions
Preview

A 7-year-old boy comes to the clinic with his father because of recurrent headaches for the past month. His father says that he often wakes up in the morning with a headache. His temperature is 37.5°C (99.5°F), pulse is 64/min, respirations are 13/min, and blood pressure is 121/81 mmHg. Physical examination shows patches of leathery-appearing and hypo-pigmented skin lesions on his back. Cranial nerve examination is normal. An MRI of the brain shows an intraventricular mass. Which of the following drugs target the pathway that is considered to be abnormally upregulated in this genetic disorder?



Transcript

Tuberous sclerosis is a genetic condition that causes growths to form in various body organs. Most commonly affecting the brain, skin, kidneys, lungs, and eyes.

Normally, there are two genes called TSC1 and TSC2 that help control the growth and division of cells in the body.

TSC1 encodes the protein hamartin and TSC2 encodes the protein tuberin.

Both of these proteins, are tumor suppressors, meaning they help slow down cell growth and prevent tumors.

They do this by combining to form a hamartin-tuberin protein complex, which binds to and inhibits another protein called mechanistic target of rapamycin, or mTOR.

mTOR activity speeds up the cell cycle and increases cell proliferation mainly thanks to its effect on protein synthesis.

So when mTOR is switched off by the hamartin-tuberin protein complex, it slows growth and division of cells throughout the body.

Individuals with tuberous sclerosis have a mutation in either the gene TSC1 or TSC2, and these mutations have an autosomal dominant inheritance pattern.

The mutations lead to an altered hamartin-tuberin protein complex that’s unable to switch off mTOR.

Because of that, benign tumors and growths called hamartomas form throughout the body.

Hamartomas are kind of like tumors, but they’re made of a variety of cell types from the tissue where they arise, rather than a single cell type.

In fact, if we think of the tissue like a sheet of fabric, a hamartoma is like a knot in the sheet.

Benign tumors and hamartomas can form in any tissue, but the brain and the skin are usually affected the most, along with the kidneys, lungs and eyes.

On top of that the lifetime risk of cancer is increased in individuals with tuberous sclerosis.

That’s because the rapidly dividing cells can develop additional mutations that eventually make these growths expand beyond the basement membrane and invade neighboring tissues.

In the brain, the most common growths are glioneural hamartomas, also known as a cortical tubers. They arise from supportive glial cells as well as neurons.

Next most common are subependymal nodules, which are hamartomas that form under the ependyma, the thin membrane that lines the ventricles in the brain.

Individuals are also at an increased risk of developing a subependymal giant cell astrocytoma, or SEGA, which is a type of cancer that can arise from the subependymal nodules.