Turner syndrome

149,635views

test

00:00 / 00:00

Turner syndrome

D115

D115

Systemic lupus erythematosus
Turner syndrome
Klinefelter syndrome
Fragile X syndrome
Prader-Willi syndrome
Angelman syndrome
Endocrine system anatomy and physiology
Restrictive lung diseases
Down syndrome (Trisomy 21)
Pyloric stenosis
Innate immune system
Antibody classes
HIV (AIDS)
Myasthenia gravis
Meningitis
Multiple sclerosis
Guillain-Barre syndrome
Delirium
Lewy body dementia
Alzheimer disease
Epilepsy
Normal pressure hydrocephalus
Huntington disease
Parkinson disease
Concussion and traumatic brain injury
Lambert-Eaton myasthenic syndrome
Major depressive disorder
Generalized anxiety disorder
Schizophrenia
Spina bifida
Phenylketonuria (NORD)
Tay-Sachs disease (NORD)
Cerebral palsy
Hyperparathyroidism
Hypoparathyroidism
Diabetes insipidus
Graves disease
Diabetes mellitus
Cushing syndrome
Primary adrenal insufficiency
Breast cancer
Benign prostatic hyperplasia
Ovarian cyst
Pneumonia
Chronic bronchitis
Asthma
Emphysema
Pulmonary embolism
Pneumothorax
Pleural effusion
Bronchiectasis
Acute respiratory distress syndrome
Mycobacterium tuberculosis (Tuberculosis)
Cor pulmonale
Bacterial epiglottitis
Laryngomalacia
Respiratory syncytial virus
Cystic fibrosis
Sudden infant death syndrome
Disseminated intravascular coagulation
Sickle cell disease (NORD)
Chronic leukemia
Acute leukemia
Myocardial infarction
Deep vein thrombosis
Hypoplastic left heart syndrome
Angina pectoris
Aortic dissection
Aortic dissections and aneurysms: Pathology review
Iron deficiency anemia
Aplastic anemia
Autoimmune hemolytic anemia
Polycythemia vera (NORD)
Immune thrombocytopenia
Epstein-Barr virus (Infectious mononucleosis)
Non-Hodgkin lymphoma
Hodgkin lymphoma
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Beta-thalassemia
Alpha-thalassemia
Raynaud phenomenon
Arterial disease
Peripheral artery disease
Coronary artery disease: Pathology review
Pericarditis and pericardial effusion
Rheumatic heart disease
Heart failure
Patent ductus arteriosus
Ventricular septal defect
Pulmonary valve disease
Kawasaki disease
Tetralogy of Fallot
Urinary tract infections: Clinical
Kidney stones
Chronic kidney disease
Nephrotic syndromes: Pathology review
Acute pyelonephritis
Chronic pyelonephritis
Lower urinary tract infection
Neurogenic bladder
Bladder exstrophy
Hypospadias and epispadias
Polycystic kidney disease
Hemolytic-uremic syndrome
Nephroblastoma (Wilms tumor)
Vesicoureteral reflux
Renal failure: Pathology review
Gastrointestinal bleeding: Pathology review
Gastroesophageal reflux disease (GERD)
GERD, peptic ulcers, gastritis, and stomach cancer: Pathology review
Zollinger-Ellison syndrome
Wilson disease
Malabsorption syndromes: Pathology review
Ulcerative colitis
Crohn disease
Irritable bowel syndrome
Diverticulosis and diverticulitis
Appendicitis
Portal hypertension
Intussusception
Celiac disease
Gastric cancer
Acute pancreatitis
Chronic pancreatitis
Chronic cholecystitis
Acute cholecystitis
Gallstones
Jaundice
Hepatitis
Hepatitis A and Hepatitis E virus
Hepatitis B and Hepatitis D virus
Hepatitis C virus
Cirrhosis
Biliary atresia
Hirschsprung disease
Paget disease of bone
Osteoporosis
Osteoarthritis
Atopic dermatitis
Varicella zoster virus
Osteomalacia and rickets
Bone tumors
Rheumatoid arthritis
Ankylosing spondylitis
Gout
Fibromyalgia
Hypothyroidism
Hypomagnesemia
Glycogen storage disorders: Pathology review
Glycogen storage disease type II (NORD)
Myalgias and myositis: Pathology review
Polymyositis
Dermatomyositis
Lordosis, kyphosis, and scoliosis
Osgood-Schlatter disease (traction apophysitis)
Legg-Calve-Perthes disease
Muscular dystrophy
Scleroderma
Psoriasis
Lichen planus
Pemphigus vulgaris
Acne vulgaris
Erythema multiforme
Stevens-Johnson syndrome
Lyme Disease
Herpes simplex virus
Skin cancer
Human herpesvirus 8 (Kaposi sarcoma)
Rubella virus
Measles virus
Burns
Shock
Cri du chat syndrome
Prostate cancer
Post-traumatic stress disorder
Wiskott-Aldrich syndrome
Ataxia-telangiectasia
DiGeorge syndrome
Truncus arteriosus
Membranoproliferative glomerulonephritis
Poststreptococcal glomerulonephritis
Menstrual cycle

Assessments

Flashcards

0 / 19 complete

High Yield Notes

3 pages

Flashcards

Turner syndrome

0 of 19 complete

External References

First Aid

2024

2023

2022

2021

Amenorrhea

Turner syndrome p. 655

Bicuspid aortic valve

Turner syndrome p. 304, 655

Coarctation of aorta p. 303, 304

Turner syndrome p. 655

Congenital heart disease p. 302-304

Turner syndrome p. 725

Cystic hygromas p. 486

Turner syndrome p. 655

Estrogen p. 648, 674

Turner syndrome p. 655

Follicle-stimulating hormone (FSH)

Turner syndrome p. 655

Horseshoe kidney p. 597

Turner syndrome p. 725

Luteinizing hormone (LH)

Turner syndrome p. 655

Pregnancy p. 651

Turner syndrome and p. 655

Turner syndrome p. 655

cardiac defect association p. 304

coarctation of aorta and p. 303

cystic hygromas p. 486

GH for p. 360

horseshoe kidney p. 597

presentation p. 725

Transcript

Watch video only

Turner syndrome, named after Henry Turner who first described it, is a chromosomal disorder affecting females where one X chromosome is either completely or partially absent.

Now, our DNA is this humongous blueprint of information on how to make a human, which is usually packaged up nicely into 46 chromosomes. These 46 chromosomes come in 23 pairs - and each pair has one chromosome from each parent. One of these pairs, the sex chromosomes, determines person’s biological sex and it can be composed of either two X chromosomes for females or an X and a Y chromosome for males.

So, if you wanted to make another human, first you’d have to find someone that feels the same way, and then you both contribute half of your chromosomes. In order to package up half the chromosomes into either a sperm cell or an egg cell, you actually start with a single cell that has 46 chromosomes. Let’s just say we’re making a sperm cell - for simplicity, we’re only going to show one pair of chromosomes, but remember that all 23 pairs do this. First step is meiosis, which is what produces our sex cells, and the chromosomes replicate, and so now they’re sort of shaped like an ‘X’—even though there are two copies of DNA here, we still say it’s one chromosome since they’re hooked together in the middle by this thing called a centromere. OK then the cell splits in two, and pulls apart the paired chromosomes, so in each of these cells you’ve now got 23 chromosomes. Now the two copies of the chromosome get pulled apart, and the cells split again, which means four cells, each still with 23 chromosomes. Now these are ready to pair up with an egg cell from mom that has 23 chromosomes as well, totaling to 46 chromosomes, and voila–nine months down the road you’ve got yourself a baby.

Usually, each parent contributes one chromosome to each pair. Fifty-fifty. Sometimes though, one parent might contribute one chromosome too many, which is called trisomy, or one chromosome less, which is called monosomy. Monosomy is what happens in Turner syndrome and it specifically affects the X chromosome. There are three potential karyotype scenarios associated with Turner syndrome. Most commonly, an entire X chromosome is missing, giving a 45, X karyotype - in other words, the person only has 45 chromosomes, missing one of the X chromosomes.

This can happen as a result of nondisjunction of sex chromosomes during meiosis, and it happens more frequently in sperm cells - but egg cells can also be affected. Nondisjunction means the chromosomes don’t split apart - so following meiosis, one resulting sex cell ends up with both chromosomes and the other gets none. Multiply by two, and the final result is 2 cells with an extra chromosome, and two cells missing a chromosome. Nondisjunction can also happen in the second step though, so first steps goes great, and both cells have a chromosome, but if they don’t split apart in the second step, then the final result is one cell with an extra chromosome, one cell missing a chromosome, and two with the right number of chromosomes. Now, if an egg cell combines with any of these sperm cells that have the missing chromosome, then you have Turner syndrome.

The next most common scenario is mosaicism, meaning the individuals have some cells in their body with the 45, X karyotype and others with a 46, XX karyotype. This happens because of an error following conception. So, conception results in a single cell the zygote, that divides, over and over again, essentially producing every kind of cell in the body. Each of these divisions is called mitosis. Nondisjunction of the sex chromosomes can also happen during any mitosis, in which case you’d end up with one cell line that has three sex chromosomes, so 47 in total, and one cell line missing an X chromosome, so 45 chromosomes in total. But if the prior divisions progressed normally, there is also one cell line with 46 chromosomes that contributes cells to the developing fetus. Now, the cell line with 47 chromosomes rarely survive, but the one with 45 does, and continues to replicate and produce more cells with only one X chromosome, along with the 46, XX cell line, leading to a mix of 45, X and 46, XX cells in the body.

The least common karyotype in Turner syndrome is where there’s only a part of the X chromosome missing. Basically, a section of the chromosome - for example the short arm - is deleted at some point during meiosis, but the rest of the chromosome is passed on. This can also happen at some point during mitosis, and the result is another mosaic karyotype.

Summary

Turner syndrome is a genetic condition that affects females, typically resulting from the loss of an X chromosome. It can cause a range of physical and developmental features, including short stature, infertility, heart defects, and learning difficulties. Treatment may involve hormone replacement therapy and other interventions to manage associated health conditions.

Sources

  1. "Robbins Basic Pathology" Elsevier (2017)
  2. "Harrison's Principles of Internal Medicine, Twentieth Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  3. "Pathophysiology of Disease: An Introduction to Clinical Medicine 8E" McGraw-Hill Education / Medical (2018)
  4. "CURRENT Medical Diagnosis and Treatment 2020" McGraw-Hill Education / Medical (2019)
  5. "First Aid for the USMLE Step 1 2021, Thirty first edition" McGraw-Hill Education / Medical (2021)
  6. "Harrison's Principles of Internal Medicine, Twenty-First Edition (Vol.1 & Vol.2)" McGraw-Hill Education / Medical (2018)
  7. "Epigenetics in Turner syndrome" Clinical Epigenetics (2018)
  8. "Cardiovascular risk in Turner syndrome" Revista Portuguesa de Cardiologia (2018)
  9. "A Review of Recent Developments in Turner Syndrome Research" Journal of Cardiovascular Development and Disease (2021)