00:00 / 00:00
Cardiovascular system
Atrioventricular block
Bundle branch block
Pulseless electrical activity
Atrial fibrillation
Atrial flutter
Atrioventricular nodal reentrant tachycardia (AVNRT)
Premature atrial contraction
Wolff-Parkinson-White syndrome
Brugada syndrome
Long QT syndrome and Torsade de pointes
Premature ventricular contraction
Ventricular fibrillation
Ventricular tachycardia
Cardiac tumors
Shock
Arterial disease
Aneurysms
Aortic dissection
Angina pectoris
Coronary steal syndrome
Myocardial infarction
Prinzmetal angina
Stable angina
Unstable angina
Abetalipoproteinemia
Familial hypercholesterolemia
Hyperlipidemia
Hypertriglyceridemia
Coarctation of the aorta
Conn syndrome
Cushing syndrome
Hypertension
Hypertensive emergency
Pheochromocytoma
Polycystic kidney disease
Renal artery stenosis
Hypotension
Orthostatic hypotension
Lymphangioma
Lymphedema
Peripheral artery disease
Subclavian steal syndrome
Nutcracker syndrome
Superior mesenteric artery syndrome
Angiosarcomas
Human herpesvirus 8 (Kaposi sarcoma)
Vascular tumors
Behcet's disease
Kawasaki disease
Vasculitis
Chronic venous insufficiency
Deep vein thrombosis
Thrombophlebitis
Acyanotic congenital heart defects: Pathology review
Aortic dissections and aneurysms: Pathology review
Atherosclerosis and arteriosclerosis: Pathology review
Cardiac and vascular tumors: Pathology review
Cardiomyopathies: Pathology review
Coronary artery disease: Pathology review
Cyanotic congenital heart defects: Pathology review
Dyslipidemias: Pathology review
Endocarditis: Pathology review
Heart blocks: Pathology review
Heart failure: Pathology review
Hypertension: Pathology review
Pericardial disease: Pathology review
Peripheral artery disease: Pathology review
Shock: Pathology review
Supraventricular arrhythmias: Pathology review
Valvular heart disease: Pathology review
Vasculitis: Pathology review
Ventricular arrhythmias: Pathology review
Ventricular tachycardia
0 / 13 complete
0 / 2 complete
of complete
of complete
2016
Ventricular refers to the bottom chambers of the heart, the right and left ventricles, as opposed to the top chambers, the right and left atria. Tachycardia refers to a fast heart rate. Typically, a tachycardic, or fast, heart rate is considered anything above 100 beats per minute, or bpm. However, ventricular tachycardia is different than a fast heart rate from exercising, which is called sinus tachycardia.
Normally, the electrical signals that generate each heartbeat start in the right atrium at the sinus node, which is also known as the sinoatrial node, or the SA node. If the rate goes over 100 bpm and originates in the SA node, it’s considered sinus tachycardia, which is totally normal.
However, heartbeats can become abnormal if the electrical signals don’t start in the SA node, but start in the ventricles instead. Premature Ventricular Contractions, or PVCs, are single beats originating from the lower chambers. Any time there are more than three beats like this in a row, then it’s defined as ventricular tachycardia. Ventricular tachycardia, sometimes called V-tach, or VT, can cause the heart rate to rise above 100 beats per minute, which can be extremely dangerous and lead to sudden cardiac death.
Hold on, how can that happen? It’s not like while we exercise we’re risking sudden cardiac death, right? Well, even though we say tachycardia is anything above 100 beats per minute, most patients with ventricular tachycardia experience heart rates as high as 250 beats per minute. 250 beats per minute mean that the heart is beating over four times per second. When the chambers are pumping that fast, they don’t have enough time to even fill with blood, so the heart is furiously pumping out only tablespoons of blood to your body, and most importantly, to your brain, which is just not enough. If this happens, a person can have symptoms from not having enough perfusion to their tissues, such as chest pain, fainting, dizziness, or shortness of breath. It can even cause sudden death.
Ventricular tachycardia is a type of tachycardia, or a rapid heartbeat that arises from improper electrical activity of the heart presenting as a rapid heart rhythm that starts in the ventricles. There are two main types of ventricular tachycardia: monomorphic, and polymorphic ventricular tachycardias.
In monomorphic ventricular tachycardia, all the beats look the same because the impulse is either being generated from increased automaticity of a single point in either the left or the right ventricle, or due to a reentry circuit within the ventricle. Polymorphic ventricular tachycardia, on the other hand, is most commonly caused by abnormalities of ventricular muscle repolarization. Ventricular tachycardia is a potentially life-threatening arrhythmia because it can cause low blood pressure and may lead to ventricular fibrillation, asystole, and sudden death. Ventricular tachycardia ranges between 100 and 250 bpm.
Copyright © 2023 Elsevier, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.