87,115views
00:00 / 00:00
Genetics
Mendelian genetics and punnett squares
Hardy-Weinberg equilibrium
Inheritance patterns
Independent assortment of genes and linkage
Evolution and natural selection
Down syndrome (Trisomy 21)
Edwards syndrome (Trisomy 18)
Patau syndrome (Trisomy 13)
Fragile X syndrome
Huntington disease
Myotonic dystrophy
Friedreich ataxia
Turner syndrome
Klinefelter syndrome
Prader-Willi syndrome
Angelman syndrome
Beckwith-Wiedemann syndrome
Cri du chat syndrome
Williams syndrome
Alagille syndrome (NORD)
Achondroplasia
Polycystic kidney disease
Familial adenomatous polyposis
Familial hypercholesterolemia
Hereditary spherocytosis
Huntington disease
Li-Fraumeni syndrome
Marfan syndrome
Multiple endocrine neoplasia
Myotonic dystrophy
Neurofibromatosis
Treacher Collins syndrome
Tuberous sclerosis
von Hippel-Lindau disease
Albinism
Polycystic kidney disease
Cystic fibrosis
Friedreich ataxia
Gaucher disease (NORD)
Glycogen storage disease type I
Glycogen storage disease type II (NORD)
Glycogen storage disease type III
Glycogen storage disease type IV
Glycogen storage disease type V
Hemochromatosis
Mucopolysaccharide storage disease type 1 (Hurler syndrome) (NORD)
Krabbe disease
Leukodystrophy
Niemann-Pick disease types A and B (NORD)
Niemann-Pick disease type C
Primary ciliary dyskinesia
Phenylketonuria (NORD)
Sickle cell disease (NORD)
Tay-Sachs disease (NORD)
Alpha-thalassemia
Beta-thalassemia
Wilson disease
Fragile X syndrome
Alport syndrome
X-linked agammaglobulinemia
Fabry disease (NORD)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency
Hemophilia
Mucopolysaccharide storage disease type 2 (Hunter syndrome) (NORD)
Lesch-Nyhan syndrome
Muscular dystrophy
Ornithine transcarbamylase deficiency
Wiskott-Aldrich syndrome
Mitochondrial myopathy
Autosomal trisomies: Pathology review
Muscular dystrophies and mitochondrial myopathies: Pathology review
Miscellaneous genetic disorders: Pathology review
Wiskott-Aldrich syndrome
0 / 12 complete
0 / 1 complete
of complete
of complete
2022
2021
2020
2019
2018
2017
2016
Wiskott-Aldrich syndrome p. 115, 720
Wiskott-Aldrich syndrome p. 115
labs/findings p. 720
X-linked recessive disorder p. 59
Wiskott-Aldrich syndrome p. 115
Wiskott-Aldrich syndrome is also called eczema-thrombocytopenia-immunodeficiency syndrome.
So, one by one, there’s eczema, also called atopic dermatitis, which is characterized by dry red patches arising on the skin.
There’s a type of thrombocytopenia called microthrombocytopenia because not only are there very few platelets, but the platelets are also small in size.
And there’s a problem with the immune system that leads to repeated infections.
All of the hematopoietic cells, which are cells in the bone marrow, produce Wiskott-Aldrich syndrome protein, or WASp for short.
There’s also a gene - called the WIPF1 gene, which encodes a protein called WAS/WASL-interacting protein family member 1, which helps stabilize Wiskott-Aldrich protein.
So WASp, aside from having a really long name that shortens down to the name of a scary flying insect - helps to reorganize the cell’s cytoskeleton, and therefore its overall shape.
The cytoskeleton can change by either adding to or removing actin proteins from the end of an actin chain.
The chain grows longer in the direction that a cell wants to move and shortens on the side that a cell wants to move away from.
This helps with various cellular activities like phagocytosis and cellular division.
Platelets specifically rely on this functionality, because they originate from large precursor cells called megakaryocytes.
This megakaryocyte has many long arms - like a squid - and the cytoskeleton changes shape so that these arms can detach to form cellular fragments called platelets.
The platelets then go off to form clots at damaged sites in the blood vessels, to stop bleeding.
Another cell type are the T-cells, which are a type of immune cell, also rely on the cytoskeleton being able to change shape.
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency disorder that primarily affects males. The condition is caused by mutations in the WAS gene, which encodes for the Wiskott-Aldrich syndrome protein (WASP). The signs and symptoms of Wiskott-Aldrich syndrome can vary widely, but often include recurrent infections due to a weakened immune system, eczema, easy bruising or bleeding due to decreased platelets and abnormal clotting, autoimmune disorders such as rheumatoid arthritis or autoimmune hemolytic anemia, and increased risk of developing certain types of cancer, including lymphoma and leukemia.
Copyright © 2023 Elsevier, except certain content provided by third parties
Cookies are used by this site.
USMLE® is a joint program of the Federation of State Medical Boards (FSMB) and the National Board of Medical Examiners (NBME). COMLEX-USA® is a registered trademark of The National Board of Osteopathic Medical Examiners, Inc. NCLEX-RN® is a registered trademark of the National Council of State Boards of Nursing, Inc. Test names and other trademarks are the property of the respective trademark holders. None of the trademark holders are endorsed by nor affiliated with Osmosis or this website.